254 research outputs found

    A radiocarbon database for Scottish archaeological samples

    Get PDF
    For the majority of dating laboratories and their respective user communities, the journal Radiocarbon is no longer regarded as the medium for primary publication of radiocarbon measurements. In compliance with editorial policy, the emphasis has long since moved towards the publication of research papers on technological enhancements and applications of C-14 as well as other cosmogenic isotopes and this has left a requirement for an alternative medium for the publication of date lists per se.In the late 1980s, an International Radiocarbon Data Base was proposed by Renee Kra (then the managing editor) but limitations in computer and communications technologies together with the inevitable financial implications meant that this timely concept could not be taken to completion. In the last year, we have taken advantage of the development of the worldwide web to compile a database of C-14 age measurements of a Scottish archaeological nature which can be found at the web address http://www.historic-scotland.gov.uk/

    Should archaeologists care about 14C inter-comparisons? Why? A summary report on SIRI

    Get PDF
    Radiocarbon (14C) dating is used widely in many projects as a basis for the creation and testing of chronological constructs. 14C measurements are by their nature complex and the degree of sample pretreatment varies considerably depending on the material. Within the United Kingdom and Europe, there are a number of well-established laboratories and increasingly, archaeologists are not just commissioning new dates, but also using statistical modelling of assemblages of dates, perhaps measured in different laboratories, to provide formal date estimates for their sites. The issue of comparability of measurements (and thus bias, accuracy and precision of measurement) from the diverse laboratories is one which has been the focus of some attention both within the 14C community and the wider user communities for some time. As a result of this but also as part of laboratory benchmarking and quality assurance, the 14C community has undertaken a wide-scale, far-reaching, and evolving program of intercomparisons, to the benefit of laboratories and users alike. This paper summarizes the most recent exercise, the Sixth International Radiocarbon Intercomparison (SIRI)

    Radiocarbon analysis of modern skeletal remains to determine year of birth and death: a case study

    Get PDF
    To aid in the development of a biological profile for human remains found in Collyhurst, Manchester, England we undertook 14C analysis of tooth enamel, tooth collagen and bone collagen on behalf of Greater Manchester Police. On the basis of the analyses of the teeth, we concluded that the person was born between 1950 and 1954 while on the basis of our analyses of cortical and trabecular bone we estimated the year of death to be between 1969 and 1974. This would make the maximum age range around 15 to 24 years. Analyses of the dentition and other skeletal parameters can eliminate the younger part of the range so an age of around 18 to 24 years at death would seem most likely. The δ13C and δ15N values for the bone collagen were higher than would be expected for someone subsisting on a purely terrestrial diet, implying some consumption of marine resources which could lead to reduced 14C activities. Taking any potential marine effect into account could reduce this age range to around 18 to 21 years

    The North Atlantic marine reservoir effect in the early Holocene: implications for defining and understanding MRE values

    Get PDF
    The marine reservoir effect (MRE) is a <sup>14</sup>C age offset between the oceanic and atmospheric carbon reservoirs. The MRE is neither spatially nor temporally constant and values may deviate significantly from the global model average provided by the Marine04 curve. Such a deviation is calculated as a ©R value and modern (pre-bomb) values show considerable spatial variations. There is also considerable evidence for temporal variability linked to paleoenvironmental changes identified in paleoclimatic proxy records. Seven new ©R values are presented for the North Atlantic, relating to the period c. 8430 3890 cal. BP (c. 6480 1940 BC). These were obtained from <sup>14</sup>C analysis of multiple samples of terrestrial and marine material derived from seven individual archaeological deposits from Mainland Scotland, the Outer Hebrides and the Orkney Isles. The ©R values vary between 143 ± 20 14C yr and ‑100 ± 15 <sup>14</sup>C yr with the positive values all occurring in the earlier period (8430 5060 cal. BP), and the negative values all coming from later deposits (4820 3890 cal. BP). The nature of MRE values and the potential for spatial and temporal variation in values is the subject of current research interest and these data are placed in the context of (i) other estimates for UK coastal waters and (ii) important questions concerning current approaches to quantifying the MRE

    Is there a fifth international radiocarbon intercomparison (VIRI)?

    Get PDF
    The issue of comparability of measurements (and thus bias, accuracy, and precision of measurement) from diverse laboratories is one which has been the focus of some attention both within the radiocarbon community and the wider user communities. As a result, the C-14 community has undertaken a widescale, far-reaching, and evolving program of inter- comparisons, to the benefit of laboratories and users alike. The benefit to the users is, however, indirect, since the C-14 intercomparisons have not been used to generate "league tables" of performance, but rather to allow individual laboratories to check procedures and modify them as required. The historical progression of C-14 laboratory intercomparisons from the Third (TIRI, completed in 1995, Gulliksen and Scott 1995) and Fourth (FIRI, completed in 2000, Scott 2003; Boaretto et al. 2000; Bryant et al. 2002) suggests that a Fifth (VIRI) should also be expected. We describe the plans for VIRI

    Sellafield-derived anthropogenic C-14 in the marine intertidal environment of the NE Irish Sea

    Get PDF
    The intertidal biota from Parton beach, close to the Sellafield nuclear fuel reprocessing plant, were all found to be enriched in radiocarbon relative to ambient background. The degree of enrichment appears to reflect the positions of the biota in the food chain once the dilution in seaweed from atmospheric uptake is taken into account. Close to the low-water mark, the order was mussels gt limpets gt anemones congruent to winkles gt seaweed. The same order was observed close to the high-water mark, except that anemones were absent from this area. The activities in the biogeochemical fractions of the water column reflect the fact that discharges are primarily in the form of dissolved inorganic carbon (DIC), which is subsequently transferred to the particulate organic carbon (POC) and, to a lesser extent, the dissolved organic carbon (DOC), and finally, the particulate inorganic carbon (PIC). Analysis of intertidal sediment suggests that there is likely to be a gradual increase in the specific activity of C-14 in the inorganic component of this material as Sellafield contaminated organisms die and their shells are ground down by natural processes

    Transport of Sellafield-derived C-14 from the Irish Sea through the North Channel

    Get PDF
    Since the early 1950s, the Sellafield nuclear fuel reprocessing plant in Northwest England has released radio-carbon into the Irish Sea in a mainly inorganic form as part of its authorized liquid effluent discharge. In contrast to the trend in which the activities of most radionuclides in the Sellafield liquid effluent have decreased substantially, C-14 discharges have increased since 1994-95. This has largely been due to a policy change favoring marine discharges over atmospheric discharges. C-14 is radiologically important due to its long half life, mobility in the environment, and propensity for entering the food chain. Current models for radionuclide dispersal in the Irish Sea are based on a reversible equilibrium distribution coefficient (k(d)), an approach which has been shown to be inadequate for C-14. Development of predictive models for the fate of Sellafield-derived C-14 requires a thorough understanding of the biogeochemical fluxes between different carbon reservoirs and the processes controlling the net flux of C-14 out of the Irish Sea, through he North Channel. In this study., both an empirical and a halving time approach indicate that close to 100% of the C-14 that is discharged from Sellafield is dispersed beyond the Irish Sea on a time-scale of months in the form of DIC, with little transfer to the PIC, POC, and DOC fractions, indicating that the "dilute and disperse" mechanism is operating satisfactorily. This is consistent with previous research that indicated little transfer of C-14 to Irish Sea sediments, While significant C-14 enhancements have been observed in the biota of the Irish Sea, this observation is not necessarily in conflict with either of the above as the total biomass has to be taken into account in any calculations of C-14 retention within the Irish Sea

    Influence of mollusk species on marine DELTA R determinations

    Get PDF
    Radiocarbon ages were measured on replicate samples of burnt grain and 5 mollusk species collected from a single sealed layer at an archaeological site (Hornish Point) on the west coast of South Uist, Scotland. The aim was to examine the impact of using different mollusk species on ΔR determinations that are calculated using the paired terrestrial/marine sample approach. The mollusk species examined inhabit a range of environments and utilize a variety of food sources within the intertidal zone. Several authors have suggested that these factors may be responsible for observed variations in the 14C activity of mollusk shells that were contemporaneous in a single location. This study found no significant variation in the <sup>14</sup>C ages of the mollusk species, and consequently, no significant variation in calculated values of ΔR. The implication is that in an area where there are no carboniferous rocks or significant local inputs of freshwater to the surface ocean, any of a range of marine mollusk species can be used in combination with short-lived terrestrial material from the same secure archaeological context to accurately determine a ΔR value for a particular geographic location and period in time

    Sources of anthropogenic C-14 to the North Sea

    Get PDF
    The Sellafield nuclear fuel reprocessing plant on the northwest coast of England is the largest source of anthropogenic radiocarbon to the UK coastal environment. In a mid-1990s study of C-14 distribution around the UK coast, the pattern of dilution with increasing distance from Sellafield appeared to be perturbed by anomalously high C-14 activities in marine biota in the coastal environment of northeast England. This present study was undertaken during 1998 and 1999 to determine whether this C-14 enhancement was due to Sellafield or the nuclear power plants on the east coast. Seawater, seaweed (Fucus sp.), and mussel (Mytilus edulis) samples that were collected from the vicinity of the Torness and Hartlepool advanced gas-cooled reactor (AGR) nuclear power stations were all enhanced above the contemporary regional background activity derived from natural production and atmospheric nuclear weapons testing. We used previously published dilution factors and transfer times for Tc-99 between Sellafield and various points on the UK coast to determine likely Sellafield- derived C-14 contributions to the activities at the nuclear power plant sites. The results suggest that the activities observed at Torness, which are only marginally enhanced above the natural background activity, are possibly due to discharges from Sellafield; however, the significant C-14 enhancements at Hartlepool are not Sellafield-derived. Furthermore, since both reactors have the same fundamental design, the low activities at the Torness AGR imply that the activities at Hartlepool are not from the AGR, suggesting that there is an input of C-14 to the marine environment in the vicinity of Hartlepool which is probably non-nuclear-power related. However, there is no other authorized site in the area that could account for the observed C-14 enrichments; therefore, further research is required to ascertain the source of this C-14

    Radiocarbon and stable isotope evidence of dietary change from the Mesolithic to the Middle Ages in the iron gates: New results from Lepenski Vir

    Get PDF
    A previous radiocarbon dating and stable isotope study of directly associated ungulate and human bone samples from Late Mesolithic burials at Schela Cladovei in Romania established that there is a freshwater reservoir effect of approximately 500 yr in the Iron Gates reach of the Danube River valley in southeast Europe. Using the delta(15)N values as an indicator of the percentage of freshwater protein in the human diet, the C-14 data for 24 skeletons from the site of Lepenski Vir were corrected for this reservoir effect. The results of the paired C-14 and stable isotope measurements provide evidence of substantial dietary change over the period from about 9000 BP to about 300 BR The data from the Early Mesolithic to the Chalcolithic are consistent with a 2-component dietary system, where the linear plot of isotopic values reflects mixing between the 2 end-members to differing degrees. Typically, the individuals of Mesolithic age have much heavier delta(15)N signals and slightly heavier delta(13)C, while individuals of Early Neolithic and Chalcolithic age have lighter delta(15)N and delta(13)C values. Contrary to our earlier suggestion, there is no evidence of a substantial population that had a transitional diet midway between those that were characteristic of the Mesolithic and Neolithic. However, several individuals with "Final Mesolithic" C-14 ages show delta(15)N and delta(13)C values that are similar to the Neolithic dietary pattern. Provisionally, these are interpreted either as incomers who originated in early farming communities outside the Iron Gates region or as indigenous individuals representing the earliest Neolithic of the Iron Gates. The results from Roman and Medieval age burials show a deviation from the linear function, suggesting the presence of a new major dietary component containing isotopically heavier carbon. This is interpreted as a consequence of the introduction of millet into the human food chain
    corecore