34 research outputs found

    In utero exposure to transient ischemia-hypoxemia promotes long-term neurodevelopmental abnormalities in male rat offspring

    Get PDF
    The impact of transient ischemic-hypoxemic insults on the developing fetal brain is poorly understood despite evidence suggesting an association with neurodevelopmental disorders such as schizophrenia and autism. To address this, we designed an aberrant uterine hypercontractility paradigm with oxytocin to better assess the consequences of acute, but transient, placental ischemia-hypoxemia in term pregnant rats. Using MRI, we confirmed that oxytocin-induced aberrant uterine hypercontractility substantially compromised uteroplacental perfusion. This was supported by the observation of oxidative stress and increased lactate concentration in the fetal brain. Genes related to oxidative stress pathways were significantly upregulated in male, but not female, offspring 1 hour after oxytocin-induced placental ischemia-hypoxemia. Persistent upregulation of select mitochondrial electron transport chain complex proteins in the anterior cingulate cortex of adolescent male offspring suggested that this sex-specific effect was enduring. Functionally, offspring exposed to oxytocin-induced uterine hypercontractility showed male-specific abnormalities in social behavior with associated region-specific changes in gene expression and functional cortical connectivity. Our findings, therefore, indicate that even transient but severe placental ischemia-hypoxemia could be detrimental to the developing brain and point to a possible mitochondrial link between intrauterine asphyxia and neurodevelopmental disorders

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    Get PDF

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion
    corecore