15 research outputs found

    Condensation of oligonucleotides assembled into nicked and gapped duplexes: potential structures for oligonucleotide delivery

    Get PDF
    The condensation of nucleic acids into well-defined particles is an integral part of several approaches to artificial cellular delivery. Improvements in the efficiency of nucleic acid delivery in vivo are important for the development of DNA- and RNA-based therapeutics. Presently, most efforts to improve the condensation and delivery of nucleic acids have focused on the synthesis of novel condensing agents. However, short oligonucleotides are not as easy to condense into well-defined particles as gene-length DNA polymers and present particular challenges for discrete particle formation. We describe a novel strategy for improving the condensation and packaging of oligonucleotides that is based on the self-organization of half-sliding complementary oligonucleotides into long duplexes (ca. 2 kb). These non-covalent assemblies possess single-stranded nicks or single-stranded gaps at regular intervals along the duplex backbones. The condensation behavior of nicked- and gapped-DNA duplexes was investigated using several cationic condensing agents. Transmission electron microscopy and light-scattering studies reveal that these DNA duplexes condense much more readily than short duplex oligonucleotides (i.e. 21 bp), and more easily than a 3 kb plasmid DNA. The polymeric condensing agents, poly-l-lysine and polyethylenimine, form condensates with nicked- and gapped-DNA that are significantly smaller than condensates formed by the 3 kb plasmid DNA. These results demonstrate the ability for DNA structure and topology to alter nucleic acid condensation and suggest the potential for the use of this form of DNA in the design of vectors for oligonucleotide and gene delivery. The results presented here also provide new insights into the role of DNA flexibility in condensate formation

    An efficient and low immunostimulatory nanoparticle formulation for systemic siRNA delivery to the tumor

    Get PDF
    We have developed a nanoparticle formulation [liposomes-protamine-hyaluronic acid nanoparticle (LPH-NP)] for systemically delivering siRNA into the tumor. The LPH-NP was prepared in a self-assembling process. Briefly, protamine and a mixture of siRNA and hyaluronic acid were mixed to prepare a negatively charged complex. Then, cationic liposomes were added to coat the complex with lipids via charge-charge interaction to prepare the LPH-NP. The LPH-NP was further modified by DSPE-PEG or DSPE-PEG-anisamide by the post-insertion method. Anisamide is a targeting ligand for the sigma receptor over-expressed in the B16F10 melanoma cells. The particle size, zeta potential and siRNA encapsulation efficiency of the formulation were approximately 115 nm, +25 mV and 90%, respectively. Luciferase siRNA was used to evaluate the gene silencing activity in the B16F10 cells, which were stably transduced with a luciferase gene. The targeted LPH-NP (PEGylated with ligand) silenced 80% of luciferase activity in the metastatic B16F10 tumor in the lung after a single i.v. injection (0.15 mg siRNA/kg). The targeted LPH-NP also showed very little immunotoxicity in a wide dose range (0.15 – 1.2 mg siRNA/kg), while the previously published formulation, LPD-NP (liposome-protamine-DNA nanoparticle), had a much narrow therapeutic window (0.15–0.45 mg/kg)

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Kinetic and Thermodynamic Factors Govern DNA Condensate Size and Morphology

    Get PDF
    It is well known that multivalent cations can cause DNA to condense from solution to form high-density nanometer scale particles. However, several fundamental questions concerning the phenomenon of DNA condensation remain unanswered. DNA condensation in vitro has been of interest for many years as a model of naturally occurring DNA packaging (e.g. chromatin, sperm head and virus capsid packing). More recently, DNA condensation has been of interest in optimizing artificial gene delivery, where packaging genes to an optimal size is essential to developing efficient uptake and delivery systems. The research presented in this dissertation provides an in depth biophysical study of the factors that control DNA condensate size and morphology. Millimolar changes in the ionic strength of the solution were found to alter the size of toroidal condensates. Variations in the order of addition of the counterions also significantly changed the size and morphology of the condensates. Studies were also performed to investigate the effects of static curvature and increased DNA flexibility on DNA condensation. These include the addition of static bending by sequence directed curvature, dynamic bending through protein-DNA interactions and reducing DNA persistence length by condensing single-stranded DNA. Several new models of DNA condensation are proposed based on the experimental data presented in this thesis.Ph.D.Committee Chair: Nicholas V. Hud; Committee Member: James C. Powers; Committee Member: L. Andrew Lyon; Committee Member: Loren D. Williams; Committee Member: Mark R. Prausnit

    Novel Nonviral Vectors Target Cellular Signaling Pathways: Regulated Gene Expression and Reduced Toxicity

    No full text
    corecore