420 research outputs found

    \u3cem\u3eEscherichia coli\u3c/em\u3e Pathotypes Occupy Distinct Niches in the Mouse Intestine

    Get PDF
    Since the first step of the infection process is colonization of the host, it is important to understand how Escherichia coli pathogens successfully colonize the intestine. We previously showed that enterohemorrhagic O157:H7 strain E. coli EDL933 colonizes a niche in the streptomycin-treated mouse intestine that is distinct from that of human commensal strains, which explains how E. coli EDL933 overcomes colonization resistance imparted by some, but not all, commensal E. coli strains. Here we sought to determine if other E. coli pathogens use a similar strategy. We found that uropathogenic E. coli CFT073 and enteropathogenic E. coli E2348/69 occupy intestinal niches that are distinct from that of E. coli EDL933. In contrast, two enterohemorrhagic strains, E. coli EDL933 and E. coli Sakai, occupy the same niche, suggesting that strategies to prevent colonization by a given pathotype should be effective against other strains of the same pathotype. However, we found that a combination of commensal E. coli strains that can prevent colonization by E. coli EDL933 did not prevent colonization by E. coli CFT073 or E. coli E2348/69. Our results indicate that development of probiotics to target multiple E. coli pathotypes will be problematic, as the factors that govern niche occupation and hence stable colonization vary significantly among strains

    \u3cem\u3eSalmonella enterica\u3c/em\u3e Serovar Typhimurium Mutants Unable To Convert Malate to Pyruvate and Oxaloacetate Are Avirulent and Immunogenic in BALB/c Mice

    Get PDF
    Previously, we showed that the Salmonella enterica serovar Typhimurium SR-11 tricarboxylic acid (TCA) cycle must operate as a complete cycle for full virulence after oral infection of BALB/c mice (M. Tchawa Yimga, M. P. Leatham, J. H. Allen, D. C. Laux, T. Conway, and P. S. Cohen, Infect. Immun. 74:1130-1140, 2006). In the same study, we showed that for full virulence, malate must be converted to both oxaloacetate and pyruvate. Moreover, it was recently demonstrated that blocking conversion of succinyl-coenzyme A to succinate attenuates serovar Typhimurium SR-11 but does not make it avirulent; however, blocking conversion of succinate to fumarate renders it completely avirulent and protective against subsequent oral infection with the virulent serovar Typhimurium SR-11 wild-type strain (R. Mercado-Lubo, E. J. Gauger, M. P. Leatham, T. Conway, and P. S. Cohen, Infect. Immun. 76:1128-1134, 2008). Furthermore, the ability to convert succinate to fumarate appeared to be required only after serovar Typhimurium SR-11 became systemic. In the present study, evidence is presented that serovar Typhimurium SR-11 mutants that cannot convert fumarate to malate or that cannot convert malate to both oxaloacetate and pyruvate are also avirulent and protective in BALB/c mice. These results suggest that in BALB/c mice, the malate that is removed from the TCA cycle in serovar Typhimurium SR-11 for conversion to pyruvate must be replenished by succinate or one of its precursors, e.g., arginine or ornithine, which might be available in mouse phagocytes

    Nutritional Basis for Colonization Resistance by Human Commensal \u3cem\u3eEscherichia coli\u3c/em\u3e Strains HS and Nissle 1917 Against \u3cem\u3eE. coli\u3c/em\u3e O157:H7 in the Mouse Intestine

    Get PDF
    Escherichia coli is a single species consisting of many biotypes, some of which are commensal colonizers of mammals and others that cause disease. Humans are colonized on average with five commensal biotypes, and it is widely thought that the commensals serve as a barrier to infection by pathogens. Previous studies showed that a combination of three pre-colonized commensal E. coli strains prevents colonization of E. coli O157:H7 in a mouse model (Leatham, et al., 2010, Infect Immun 77: 2876–7886). The commensal biotypes included E. coli HS, which is known to successfully colonize humans at high doses with no adverse effects, and E. coli Nissle 1917, a human commensal strain that is used in Europe as a preventative of traveler\u27s diarrhea. We hypothesized that commensal biotypes could exert colonization resistance by consuming nutrients needed by E. coli O157:H7 to colonize, thus preventing this first step in infection. Here we report that to colonize streptomycin-treated mice E. coli HS consumes six of the twelve sugars tested and E. coli Nissle 1917 uses a complementary yet divergent set of seven sugars to colonize, thus establishing a nutritional basis for the ability of E. coli HS and Nissle 1917 to occupy distinct niches in the mouse intestine. Together these two commensals use the five sugars previously determined to be most important for colonization of E. coli EDL933, an O157:H7 strain. As predicted, the two commensals prevented E. coli EDL933 colonization. The results support a model in which invading pathogenic E. coli must compete with the gut microbiota to obtain the nutrients needed to colonize and establish infection; accordingly, the outcome of the challenge is determined by the aggregate capacity of the native microbiota to consume the nutrients required by the pathogen

    Precolonized Human Commensal \u3cem\u3eEscherichia coli\u3c/em\u3e Strains Serve as a Barrier to \u3cem\u3eE. coli\u3c/em\u3e O157:H7 Growth in the Streptomycin-Treated Mouse Intestine

    Get PDF
    Different Escherichia coli strains generally have the same metabolic capacity for growth on sugars in vitro, but they appear to use different sugars in the streptomycin-treated mouse intestine (Fabich et al., Infect. Immun. 76:1143-1152, 2008). Here, mice were precolonized with any of three human commensal strains (E. coli MG1655, E. coli HS, or E. coli Nissle 1917) and 10 days later were fed 105 CFU of the same strains. While each precolonized strain nearly eliminated its isogenic strain, confirming that colonization resistance can be modeled in mice, each allowed growth of the other commensal strains to higher numbers, consistent with different commensal E. coli strains using different nutrients in the intestine. Mice were also precolonized with any of five commensal E. coli strains for 10 days and then were fed 105 CFU of E. coli EDL933, an O157:H7 pathogen. E. coli Nissle 1917 and E. coli EFC1 limited growth of E. coli EDL933 in the intestine (103 to 104 CFU/gram of feces), whereas E. coli MG1655, E. coli HS, and E. coli EFC2 allowed growth to higher numbers (106 to 107 CFU/gram of feces). Importantly, when E. coli EDL933 was fed to mice previously co-colonized with three E. coli strains (MG1655, HS, and Nissle 1917), it was eliminated from the intestine (/gram of feces). These results confirm that commensal E. coli strains can provide a barrier to infection and suggest that it may be possible to construct E. coli probiotic strains that prevent growth of pathogenic E. coli strains in the intestine

    l-Fucose Stimulates Utilization of d-Ribose by \u3cem\u3eEscherichia coli\u3c/em\u3e MG1655 ΔfucAO and \u3cem\u3eE. coli\u3c/em\u3e Nissle 1917 ΔfucAO Mutants in the Mouse Intestine and in M9 Minimal Medium

    Get PDF
    Escherichia coli MG1655 uses several sugars for growth in the mouse intestine. To determine the roles of l-fucose and d-ribose, an E. coli MG1655 ΔfucAO mutant and an E. coli MG1655 ΔrbsK mutant were fed separately to mice along with wild-type E. coli MG1655. The E. coli MG1655 ΔfucAO mutant colonized the intestine at a level 2 orders of magnitude lower than that of the wild type, but the E. coli MG1655 ΔrbsK mutant and the wild type colonized at nearly identical levels. Surprisingly, an E. coli MG1655 ΔfucAO ΔrbsK mutant was eliminated from the intestine by either wild-type E. coli MG1655 or E. coli MG1655 ΔfucAO, suggesting that the ΔfucAO mutant switches to ribose in vivo. Indeed, in vitro growth experiments showed that l-fucose stimulated utilization of d-ribose by the E. coli MG1655 ΔfucAO mutant but not by an E. coli MG1655 ΔfucK mutant. Since the ΔfucK mutant cannot convert l-fuculose to l-fuculose-1-phosphate, whereas the ΔfucAO mutant accumulates l-fuculose-1-phosphate, the data suggest that l-fuculose-1-phosphate stimulates growth on ribose both in the intestine and in vitro. An E. coli Nissle 1917 ΔfucAO mutant, derived from a human probiotic commensal strain, acted in a manner identical to that of E. coli MG1655 ΔfucAO in vivo and in vitro. Furthermore, l-fucose at a concentration too low to support growth stimulated the utilization of ribose by the wild-type E. coli strains in vitro. Collectively, the data suggest that l-fuculose-1-phosphate plays a role in the regulation of ribose usage as a carbon source by E. coli MG1655 and E. coli Nissle 1917 in the mouse intestine

    Role of Gluconeogenesis and the Tricarboxylic Acid Cycle in the Virulence of \u3cem\u3eSalmonella enterica\u3c/em\u3e Serovar Typhimurium in BALB/c Mice

    Get PDF
    In Salmonella enterica serovar Typhimurium, the Cra protein (catabolite repressor/activator) regulates utilization of gluconeogenic carbon sources by activating transcription of genes in the gluconeogenic pathway, the glyoxylate bypass, the tricarboxylic acid (TCA) cycle, and electron transport and repressing genes encoding glycolytic enzymes. A serovar Typhimurium SR-11 Δcra mutant was recently reported to be avirulent in BALB/c mice via the peroral route, suggesting that gluconeogenesis may be required for virulence. In the present study, specific SR-11 genes in the gluconeogenic pathway were deleted (fbp, glpX, ppsA, and pckA), and the mutants were tested for virulence in BALB/c mice. The data show that SR-11 does not require gluconeogenesis to retain full virulence and suggest that as yet unidentified sugars are utilized by SR-11 for growth during infection of BALB/c mice. The data also suggest that the TCA cycle operates as a full cycle, i.e., a sucCD mutant, which prevents the conversion of succinyl coenzyme A to succinate, and an ΔsdhCDA mutant, which blocks the conversion of succinate to fumarate, were both attenuated, whereas both an SR-11 ΔaspA mutant and an SR-11 ΔfrdABC mutant, deficient in the ability to run the reductive branch of the TCA cycle, were fully virulent. Moreover, although it appears that SR-11 replenishes TCA cycle intermediates from substrates present in mouse tissues, fatty acid degradation and the glyoxylate bypass are not required, since an SR-11 ΔfadD mutant and an SR-11 ΔaceA mutant were both fully virulent

    Role of Motility and the \u3cem\u3eflhDC\u3c/em\u3e Operon in \u3cem\u3eEscherichia coli\u3c/em\u3e MG1655 Colonization of the Mouse Intestine

    Get PDF
    Previously, we reported that the mouse intestine selected mutants of Escherichia coli MG1655 that have improved colonizing ability (M. P. Leatham et al., Infect. Immun. 73:8039-8049, 2005). These mutants grew 10 to 20% faster than their parent in mouse cecal mucus in vitro and 15 to 30% faster on several sugars found in the mouse intestine. The mutants were nonmotile and had deletions of various lengths beginning immediately downstream of an IS1 element located within the regulatory region of the flhDC operon, which encodes the master regulator of flagellum biosynthesis, FlhD4C2. Here we show that during intestinal colonization by wild-type E. coli strain MG1655, 45 to 50% of the cells became nonmotile by day 3 after feeding of the strain to mice and between 80 and 90% of the cells were nonmotile by day 15 after feeding. Ten nonmotile mutants isolated from mice were sequenced, and all were found to have flhDC deletions of various lengths. Despite this strong selection, 10 to 20% of the E. coli MG1655 cells remained motile over a 15-day period, suggesting that there is an as-yet-undefined intestinal niche in which motility is an advantage. The deletions appear to be selected in the intestine for two reasons. First, genes unrelated to motility that are normally either directly or indirectly repressed by FlhD4C2 but can contribute to maximum colonizing ability are released from repression. Second, energy normally used to synthesize flagella and turn the flagellar motor is redirected to growth

    Role of Motility and the \u3cem\u3eflhDC\u3c/em\u3e Operon in \u3cem\u3eEscherichia coli\u3c/em\u3e MG1655 Colonization of the Mouse Intestine

    Get PDF
    Previously, we reported that the mouse intestine selected mutants of Escherichia coli MG1655 that have improved colonizing ability (M. P. Leatham et al., Infect. Immun. 73:8039-8049, 2005). These mutants grew 10 to 20% faster than their parent in mouse cecal mucus in vitro and 15 to 30% faster on several sugars found in the mouse intestine. The mutants were nonmotile and had deletions of various lengths beginning immediately downstream of an IS1 element located within the regulatory region of the flhDC operon, which encodes the master regulator of flagellum biosynthesis, FlhD4C2. Here we show that during intestinal colonization by wild-type E. coli strain MG1655, 45 to 50% of the cells became nonmotile by day 3 after feeding of the strain to mice and between 80 and 90% of the cells were nonmotile by day 15 after feeding. Ten nonmotile mutants isolated from mice were sequenced, and all were found to have flhDC deletions of various lengths. Despite this strong selection, 10 to 20% of the E. coli MG1655 cells remained motile over a 15-day period, suggesting that there is an as-yet-undefined intestinal niche in which motility is an advantage. The deletions appear to be selected in the intestine for two reasons. First, genes unrelated to motility that are normally either directly or indirectly repressed by FlhD4C2 but can contribute to maximum colonizing ability are released from repression. Second, energy normally used to synthesize flagella and turn the flagellar motor is redirected to growth

    \u3cem\u3eEscherichia coli\u3c/em\u3e EDL933 Requires Gluconeogenic Nutrients To Successfully Colonize the Intestines of Streptomycin-Treated Mice Precolonized with \u3cem\u3eE. coli\u3c/em\u3e Nissle 1917

    Get PDF
    Escherichia coli MG1655, a K-12 strain, uses glycolytic nutrients exclusively to colonize the intestines of streptomycin-treated mice when it is the only E. coli strain present or when it is confronted with E. coli EDL933, an O157:H7 strain. In contrast, E. coli EDL933 uses glycolytic nutrients exclusively when it is the only E. coli strain in the intestine but switches in part to gluconeogenic nutrients when it colonizes mice precolonized with E. coli MG1655 (R. L. Miranda et al., Infect Immun 72:1666–1676, 2004, http://dx.doi.org/10.1128/IAI.72.3.1666-1676.2004). Recently, J. W. Njoroge et al. (mBio 3:e00280-12, 2012, http://dx.doi.org/10.1128/mBio.00280-12) reported that E. coli 86-24, an O157:H7 strain, activates the expression of virulence genes under gluconeogenic conditions, suggesting that colonization of the intestine with a probiotic E. coli strain that outcompetes O157:H7 strains for gluconeogenic nutrients could render them nonpathogenic. Here we report that E. coli Nissle 1917, a probiotic strain, uses both glycolytic and gluconeogenic nutrients to colonize the mouse intestine between 1 and 5 days postfeeding, appears to stop using gluconeogenic nutrients thereafter in a large, long-term colonization niche, but continues to use them in a smaller niche to compete with invading E. coli EDL933. Evidence is also presented suggesting that invading E. coli EDL933 uses both glycolytic and gluconeogenic nutrients and needs the ability to perform gluconeogenesis in order to colonize mice precolonized with E. coli Nissle 1917. The data presented here therefore rule out the possibility that E. coli Nissle 1917 can starve the O157:H7 E. coli strain EDL933 of gluconeogenic nutrients, even though E. coli Nissle 1917 uses such nutrients to compete with E. coli EDL933 in the mouse intestine
    • …
    corecore