3,851 research outputs found

    METROPOLITAN ENCHANTMENT AND DISENCHANTMENT. METROPOLITAN ANTHROPOLOGY FOR THE CONTEMPORARY LIVING MAP CONSTRUCTION

    Get PDF
    We can no longer interpret the contemporary metropolis as we did in the last century. The thought of civil economy regarding the contemporary Metropolis conflicts more or less radically with the merely acquisitive dimension of the behaviour of its citizens. What is needed is therefore a new capacity for imagining the economic-productive future of the city: hybrid social enterprises, economically sustainable, structured and capable of using technologies, could be a solution for producing value and distributing it fairly and inclusively. Metropolitan Urbanity is another issue to establish. Metropolis needs new spaces where inclusion can occur, and where a repository of the imagery can be recreated. What is the ontology behind the technique of metropolitan planning and management, its vision and its symbols? Competitiveness, speed, and meritocracy are political words, not technical ones. Metropolitan Urbanity is the characteristic of a polis that expresses itself in its public places. Today, however, public places are private ones that are destined for public use. The Common Good has always had a space of representation in the city, which was the public space. Today, the Green-Grey Infrastructure is the metropolitan city's monument that communicates a value for future generations and must therefore be recognised and imagined; it is the production of the metropolitan symbolic imagery, the new magic of the city

    Questione di forma

    Get PDF

    Development of quartz fiber calorimetry

    Get PDF
    Embedding radiation hard (up to Gigarad levels) silica optical fibres into an absorber is proposed for applications in very forward LHC calorimeters. The shower particles produce Cherenkov light. The main advantages of this solution are the fast response (signal duration below 10 ns), transverse dimension of the visible energy of hadronic showers of the order of 1 cm, and insensitivity to radio- and neutron- activation. A comprehensive study of the performance of such detector is proposed

    Oxidative Stress in Retinal Degeneration Promoted by Constant LED Light

    Get PDF
    Light pollution by artificial light, might accelerate retinal diseases and circadian asynchrony. The excess of light exposure is a growing problem in societies, so studies on the consequences of long-term exposure to low levels of light are needed to determine the effects on vision. The possibility to understand the molecular mechanisms of light damage will contribute to the knowledge about visual disorders related to defects in the phototransduction. Several animal models have been used to study retinal degeneration (RD) by light; however, some important aspects remain to be established. Previously, we demonstrated that cool white treatment of 200 lux light-emitting diode (LED) induces retinal transformation with rods and cones cell death and significant changes in opsin expression in the inner nuclear layer (INL) and ganglion cell layer (GCL). Therefore, to further develop describing the molecular pathways of RD, we have examined here the oxidative stress and the fatty acid composition in rat retinas maintained at constant light. We demonstrated the existence of oxidative reactions after 5 days in outer nuclear layer (ONL), corresponding to classical photoreceptors; catalase (CAT) enzyme activity did not show significant differences in all times studied and the fatty acid study showed that docosahexaenoic acid decreased after 4 days. Remarkably, the docosahexaenoic acid diminution showed a correlation with the rise in stearic acid indicating a possible association between them. We assumed that the reduction in docosahexaenoic acid may be affected by the oxidative stress in photoreceptors outer segment which in turn affects the stearic acid composition with consequences in the membrane properties. All these miss-regulation affects the photoreceptor survival through unknown mechanisms involved. We consider that oxidative stress might be one of the pathways implicated in RD promoted by light

    A new method for automatic Multiple Partial Discharge Classification

    No full text
    A new wavelet based feature parameter have been developed to represent the characteristics of PD activities, i.e. the wavelet decomposition energy of PD pulses measured from non-conventional ultra wide bandwidth PD sensors such as capacitive couplers (CC) or high frequency current transformers (HFCT). The generated feature vectors can contain different dimensions depending on the length of recorded pulses. These high dimensional feature vectors can then be processed using Principal Component Analysis (PCA) to map the data into a three dimensional space whilst the first three most significant components representing the feature vector are preserved. In the three dimensional mapped space, an automatic Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm is then applied to classify the data cluster(s) produced by the PCA. As the procedure is undertaken in a three dimensional space, the obtained clustering results can be easily assessed. The classified PD sub-data sets are then reconstructed in the time domain as phase-resolved patterns to facilitate PD source type identification. The proposed approach has been successfully applied to PD data measured from electrical machines and power cables where measurements were undertaken in different laboratories

    A rapid and simple uhplc-ms/ms method for quantification of plasma globotriaosylsphingosine (Lyso-gb3)

    Get PDF
    Fabry disease (FD) is a rare X-linked lysosomal storage disorder caused by α-galactosidase A gene (GLA) mutations, resulting in loss of activity of the lysosomal hydrolase, α-galactosidase A (α-Gal A). As a result, the main glycosphingolipid substrates, globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3), accumulate in plasma, urine, and tissues. Here, we propose a simple, fast, and sensitive method for plasma quantification of lyso-Gb3, the most promising secondary screening target for FD. Assisted protein precipitation with methanol using Phree cartridges was performed as sample pre-treatment and plasma concentrations were measured using UHPLC-MS/MS operating in MRM positive electrospray ionization. Method validation provided ex-cellent results for the whole calibration range (0.25–100 ng/mL). Intra-assay and inter-assay accuracy and precision (CV%) were calculated as <10%. The method was successfully applied to 55 plasma samples obtained from 34 patients with FD, 5 individuals carrying non-relevant polymorphisms of the GLA gene, and 16 healthy controls. Plasma lyso-Gb3 concentrations were larger in both male and female FD groups compared to healthy subjects (p < 0.001). Normal levels of plasma lyso-Gb3 were observed for patients carrying non-relevant mutations of the GLA gene compared to the control group (p = 0.141). Dropping the lower limit of quantification (LLOQ) to 0.25 ng/mL allowed us to set the optimal plasma lyso-Gb3 cut-off value between FD patients and healthy controls at 0.6 ng/mL, with a sensitivity of 97.1%, specificity of 100%, and accuracy of 0.998 expressed by the area under the ROC curve (C.I. 0.992 to 1.000, p-value < 0.001). Based on the results obtained, this method can be a reliable tool for early phenotypic assignment, assessing diagnoses in patients with borderline GalA activity, and confirming non-relevant mutations of the GLA gene

    Effects of Long Term Hg Contamination on Soil Mercury Speciation and Soil Biological Activities.

    Get PDF
    The suspended matter discharged by the Isonzo river has carried over, for centuries, heavily contaminated mine spoils from the Idrija mercury mining site (Slovenija). A frequently flooded area at the confluence of the Isonzo and Torre rivers was chosen for a preliminary study on the effects of long term mercury pollution on soil biological activities, Hg speciation and plant bioavailability. Soil mercury contamination reached up to about 80 \ub5g g-1 near the banks of Isonzo river and decreased down to about 0.2 \ub5g g-1 near the Torre river, with the predominance of mercuric sulfide and elemental mercury. Soil microbial biomass was not adversely affected by Hg contamination as most soil biological activities, with the exception of arylsulphatase and acid phosphatase, which showed significant negative trends against total mercury and its fractions. Two plant genres (Arum spp. and Rubus spp.) were collected in four different places: Rubus spp. showed the largest uptake capacity of mercury (about 1 \ub5g g-1). Long term mercury contamination does not seem to constitute a stressing factor for soil biological activities but remains nevertheless a concern for its transfer through the food chain
    • …
    corecore