14 research outputs found

    From Sub-Pectoral to Pre-Pectoral Implant Reconstruction: A Decisional Algorithm to Optimise Outcomes of Breast Replacement Surgery

    Get PDF
    Background: Innovations and advancements with implant-based breast reconstruction, such as the use of ADMs, fat grafting, NSMs, and better implants, have enabled surgeons to now place breast implants in the pre-pectoral space rather than under the pectoralis major muscle. Breast implant replacement surgery in post-mastectomy patients, with pocket conversion from retro-pectoral to pre-pectoral, is becoming increasingly common, in order to solve the drawbacks of retro-pectoral implant positioning (animation deformity, chronic pain, and poor implant positioning). Materials and Methods: A multicentric retrospective study was conducted, considering all patients previously submitted to implant-based post-mastectomy breast reconstruction who underwent a breast implant replacement with pocket conversion procedure at the University Hospital of Udine—Plastic and Reconstructive Surgery Department—and “Centro di Riferimento Oncologico” (C.R.O.) of Aviano, from January 2020 to September 2021. Patients were candidates for a breast implant replacement with pocket conversion procedure if they met the following inclusion criteria: they underwent a previous implant-based post-mastectomy breast reconstruction and developed animation deformity, chronic pain, severe capsular contracture, or implant malposition. Patient data included age, body mass index (BMI), comorbidities, smoking status, pre- or post-mastectomy radiotherapy (RT), tumour classification, type of mastectomy, previous or ancillary procedures (lipofilling), type and volume of implant used, type of ADM, and post-operative complications (breast infection, implant exposure and malposition, haematoma, or seroma). Results: A total of 31 breasts (30 patients) were included in this analysis. Just three months after surgery, we recorded 100% resolution of the problems for which pocket conversion was indicated, which was confirmed at 6, 9, and 12 months post-operative. We also developed an algorithm describing the correct steps for successful breast-implant pocket conversion. Conclusion: Our results, although only early experience, are very encouraging. We realized that, besides gentle surgical handling, one of the most important factors in proper pocket conversion selection is an accurate pre-operative and intra-operative clinical evaluation of the tissue thickness in all breast quadrants

    An Osteosarcoma Model by 3D Printed Polyurethane Scaffold and In Vitro Generated Bone Extracellular Matrix

    Get PDF
    Osteosarcoma is a primary bone tumor characterized by a dismal prognosis, especially in the case of recurrent disease or metastases. Therefore, tools to understand in-depth osteosarcoma progression and ultimately develop new therapeutics are urgently required. 3D in vitro models can provide an optimal option, as they are highly reproducible, yet sufficiently complex, thus reliable alternatives to 2D in vitro and in vivo models. Here, we describe 3D in vitro osteosarcoma models prepared by printing polyurethane (PU) by fused deposition modeling, further enriched with human mesenchymal stromal cell (hMSC)-secreted biomolecules. We printed scaffolds with different morphologies by changing their design (i.e., the distance between printed filaments and printed patterns) to obtain different pore geometry, size, and distribution. The printed PU scaffolds were stable during in vitro cultures, showed adequate porosity (55–67%) and tunable mechanical properties (Young’s modulus ranging in 0.5–4.0 MPa), and resulted in cytocompatible. We developed the in vitro model by seeding SAOS-2 cells on the optimal PU scaffold (i.e., 0.7 mm inter-filament distance, 60 pattern), by testing different pre-conditioning factors: none, undifferentiated hMSC-secreted, and osteo-differentiated hMSC-secreted extracellular matrix (ECM), which were obtained by cell lysis before SAOS-2 seeding. Scaffolds pre-cultured with osteo-differentiated hMSCs, subsequently lysed, and seeded with SAOS-2 cells showed optimal colonization, thus disclosing a suitable biomimetic microenvironment for osteosarcoma cells, which can be useful both in tumor biology study and, possibly, treatment

    The Impact of COVID-19 on Plastic Surgery Residency Training

    Get PDF
    Abstract: Nowadays didactic and surgical activities for residents in the surgery field are less and less due to an increasing burden of documentation and \u201cnon-educational work.\u201d Considering the current lockdown due to the COVID-19 pandemic, it has never been so important to find different ways to allow residents to improve their knowledge. We asked all plastic and esthetic surgery residents in our country to fill out a questionnaire to investigate changes in their didactical activity and analyze problems about their professional growth in the last few months. From the results of such questionnaires, we found that most of the residents feel the decrease in surgical activities during this time is a detrimental factor for their training and that even if all the schools have changed their didactical activities no school has introduced the use of virtual simulators to compensate for the decrease in surgical practice. Actually, the majority of residents use webinars to keep updated, stating that such technologies are useful but not sufficient to analyze plastic surgery topics in depth during COVID-19 lockdown. Virtual interactive tools are well known in different clinical and surgical specialties, and they are considered as a valid support, but it seems that in plastic surgery they are not so used. According to the most recent studies about residents\u2019 didactical program, we have investigated the potential of Anatomage Table in combination with Touch Surgery application as physical and mental aids to bypass the decreased number and kind of surgical interventions performed in this particular time. Anatomage is an academic user-friendly touch screen table; it is used by both medical students and residents to learn human anatomy and to master surgical anatomy. Touch Surgery is an application available on smartphones and tablets that gives the possibility to watch real and virtually designed surgical videos, accompanied by explanatory comments on the surgical phases; they are interactive and give the possibility to check what you have learned through tests administered after virtual classes. In our opinion, these tools represent reliable solutions to improve plastic residents\u2019 training, mostly during the COVID-19 pandemic. Level of Evidence V: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266

    An osteosarcoma model by 3D printed polyurethane scaffold and in vitro generated bone extracellular matrix

    Get PDF
    Osteosarcoma is a primary bone tumor characterized by a dismal prognosis, especially in the case of recurrent disease or metastases. Therefore, tools to understand in-depth osteosarcoma progression and ultimately develop new therapeutics are urgently required. 3D in vitro models can provide an optimal option, as they are highly reproducible, yet sufficiently complex, thus reliable alternatives to 2D in vitro and in vivo models. Here, we describe 3D in vitro osteosarcoma models prepared by printing polyurethane (PU) by fused deposition modeling, further enriched with human mesenchymal stromal cell (hMSC)-secreted biomolecules. We printed scaffolds with different morphologies by changing their design (i.e., the distance between printed filaments and printed patterns) to obtain different pore geometry, size, and distribution. The printed PU scaffolds were stable during in vitro cultures, showed adequate porosity (55–67%) and tunable mechanical properties (Young’s modulus ranging in 0.5–4.0 MPa), and resulted in cytocompatible. We developed the in vitro model by seeding SAOS-2 cells on the optimal PU scaffold (i.e., 0.7 mm inter-filament distance, 60° pattern), by testing different pre-conditioning factors: none, undifferentiated hMSC-secreted, and osteo-differentiated hMSC-secreted extracellular matrix (ECM), which were obtained by cell lysis before SAOS-2 seeding. Scaffolds pre-cultured with osteo-differentiated hMSCs, subsequently lysed, and seeded with SAOS-2 cells showed optimal colonization, thus disclosing a suitable biomimetic microenvironment for osteosarcoma cells, which can be useful both in tumor biology study and, possibly, treatment

    Crosslinked gelatin hydrogels as carriers for controlled heparin release

    No full text
    The application of heparin as anticoagulant, anti-inflammatory and growth factor regulating agent is currently limited by its narrow therapeutic window. Here, we describe the use of chemically crosslinked gelatin hydrogels as delivery platform to achieve the control of heparin release over time. Different hydrogel formulations and two strategies for heparin loading were tested. The synergic electrostatic interactions between heparin and gelatin hydrogels resulted in a sustained release until 60 h, demonstrated by toluidine blue tests. Platelets adhesion was significantly reduced in heparin-loaded hydrogels, thus proving good heparin bioactivity after processing. Our heparin-loaded hydrogels represent a possible valid option to develop coating for catheters and cardiovascular devices, or skin dressings
    corecore