185 research outputs found

    From Sub-Pectoral to Pre-Pectoral Implant Reconstruction: A Decisional Algorithm to Optimise Outcomes of Breast Replacement Surgery

    Get PDF
    Background: Innovations and advancements with implant-based breast reconstruction, such as the use of ADMs, fat grafting, NSMs, and better implants, have enabled surgeons to now place breast implants in the pre-pectoral space rather than under the pectoralis major muscle. Breast implant replacement surgery in post-mastectomy patients, with pocket conversion from retro-pectoral to pre-pectoral, is becoming increasingly common, in order to solve the drawbacks of retro-pectoral implant positioning (animation deformity, chronic pain, and poor implant positioning). Materials and Methods: A multicentric retrospective study was conducted, considering all patients previously submitted to implant-based post-mastectomy breast reconstruction who underwent a breast implant replacement with pocket conversion procedure at the University Hospital of Udine—Plastic and Reconstructive Surgery Department—and “Centro di Riferimento Oncologico” (C.R.O.) of Aviano, from January 2020 to September 2021. Patients were candidates for a breast implant replacement with pocket conversion procedure if they met the following inclusion criteria: they underwent a previous implant-based post-mastectomy breast reconstruction and developed animation deformity, chronic pain, severe capsular contracture, or implant malposition. Patient data included age, body mass index (BMI), comorbidities, smoking status, pre- or post-mastectomy radiotherapy (RT), tumour classification, type of mastectomy, previous or ancillary procedures (lipofilling), type and volume of implant used, type of ADM, and post-operative complications (breast infection, implant exposure and malposition, haematoma, or seroma). Results: A total of 31 breasts (30 patients) were included in this analysis. Just three months after surgery, we recorded 100% resolution of the problems for which pocket conversion was indicated, which was confirmed at 6, 9, and 12 months post-operative. We also developed an algorithm describing the correct steps for successful breast-implant pocket conversion. Conclusion: Our results, although only early experience, are very encouraging. We realized that, besides gentle surgical handling, one of the most important factors in proper pocket conversion selection is an accurate pre-operative and intra-operative clinical evaluation of the tissue thickness in all breast quadrants

    Optimizing Acellular Dermal Matrix Integration in Heterologous Breast Reconstructive Surgery: Surgical Tips and Post-Operative Management

    Get PDF
    Background and Objective: Prepectoral implant placement in breast reconstruction is currently a must-have in the portfolios of breast surgeons. The introduction of new tools and conservative mastectomies is a game changer in this field. The prepectoral plane usually goes hand-in-hand with the ADM wrapping of the implant. It is a cell-free dermal matrix comprising a structurally integrated basement membrane complex and an extracellular matrix. The literature reports that ADMs may be useful, but proper patient selection, surgical placement, and post-operative management are essential to unlock the potential of this tool, as these factors contribute to the proper integration of the matrix with surrounding tissues. Materials and Methods: A total of 245 prepectoral breast reconstructions with prostheses or expanders and ADMs were performed in our institution between 2016 and 2022. A retrospective study was carried out to record patient characteristics, risk factors, surgical procedures, reconstructive processes, and complications. Based on our experience, we developed a meticulous reconstruction protocol in order to optimize surgical practice and lower complication rates. The DTI and two-stage reconstruction were compared. Results: Seroma formation was the most frequent early complication (less than 90 days after surgery) that we observed; however, the majority were drained in outpatient settings and healed rapidly. Secondary healing of wounds, which required a few more weeks of dressing, represented the second most frequent early complication (10.61%). Rippling was the most common late complication, particularly in DTI patients. After comparing the DTI and two-stage reconstruction, no statistically significant increase in complications was found. Conclusions: The weakness of prepectoral breast reconstruction is poor matrix integration, which leads to seroma and other complications. ADM acts like a graft; it requires firm and healthy tissues to set in. In order to do so, there are three key steps to follow: (1) adequate patient selection; (2) preservative and gentle handling of intra-operative technique; and (3) meticulous post-operative management

    Fabrication of photothermally active poly(vinyl alcohol) films with gold nanostars for antibacterial applications.

    Get PDF
    The unique photothermal properties of non-spherical gold nanoparticles under near-infrared (NIR) irradiation find broad application in nanotechnology and nanomedicine. The combination of their plasmonic features with widely used biocompatible poly(vinyl alcohol) (PVA) films can lead to novel hybrid polymeric materials with tunable photothermal properties and a wide range of applications. In this study, thin PVA films containing highly photothermally efficient gold nanostars (GNSs) were fabricated and their properties were studied. The resulting films displayed good mechanical properties and a pronounced photothermal effect under NIR irradiation. The local photothermal effect triggered by NIR irradiation of the PVA-GNS films is highly efficient at killing bacteria, therefore providing an opportunity to develop new types of protective antibacterial films and coatings

    Business cycles, international trade and capital flows: Evidence from Latin America

    Get PDF
    This paper adopts a flexible framework to assess both short- and long-run business cycle linkages between six Latin American (LA) countries and the four largest economies in the world (namely the US, the Euro area, Japan and China) over the period 1980:I-2011:IV. The result indicate that within the LA region there are considerable differences between countries, success stories coexisting with extremely vulnerable economies. They also show that the LA region as a whole is largely dependent on external developments, especially in the years after the great recession of 2008 and 2009. The trade channel appears to be the most important source of business cycle comovement, whilst capital flows are found to have a limited role, especially in the very short run

    Neutral pion emission from accelerated protons in the supernova remnant W44

    Full text link
    We present the AGILE gamma-ray observations in the energy range 50 MeV - 10 GeV of the supernova remnant (SNR) W44, one of the most interesting systems for studying cosmic-ray production. W44 is an intermediate-age SNR (20, 000 years) and its ejecta expand in a dense medium as shown by a prominent radio shell, nearby molecular clouds, and bright [SII] emitting regions. We extend our gamma-ray analysis to energies substantially lower than previous measurements which could not conclusively establish the nature of the radiation. We find that gamma-ray emission matches remarkably well both the position and shape of the inner SNR shocked plasma. Furthermore, the gamma-ray spectrum shows a prominent peak near 1 GeV with a clear decrement at energies below a few hundreds of MeV as expected from neutral pion decay. Here we demonstrate that: (1) hadron-dominated models are consistent with all W44 multiwavelength constraints derived from radio, optical, X-ray, and gamma-ray observations; (2) ad hoc lepton-dominated models fail to explain simultaneously the well-constrained gamma-ray and radio spectra, and require a circumstellar density much larger than the value derived from observations; (3) the hadron energy spectrum is well described by a power-law (with index s = 3.0 \pm 0.1) and a low-energy cut-off at Ec = 6 \pm 1 GeV. Direct evidence for pion emission is then established in an SNR for the first time.Comment: accepted for publication on ApJ

    Calibration of AGILE-GRID with In-Flight Data and Monte Carlo Simulations

    Full text link
    Context: AGILE is a gamma-ray astrophysics mission which has been in orbit since 23 April 2007 and continues to operate reliably. The gamma-ray detector, AGILE-GRID, has observed Galactic and extragalactic sources, many of which were collected in the first AGILE Catalog. Aims: We present the calibration of the AGILE-GRID using in-flight data and Monte Carlo simulations, producing Instrument Response Functions (IRFs) for the effective area A_eff), Energy Dispersion Probability (EDP), and Point Spread Function (PSF), each as a function of incident direction in instrument coordinates and energy. Methods: We performed Monte Carlo simulations at different gamma-ray energies and incident angles, including background rejection filters and Kalman filter-based gamma-ray reconstruction. Long integrations of in-flight observations of the Vela, Crab and Geminga sources in broad and narrow energy bands were used to validate and improve the accuracy of the instrument response functions. Results: The weighted average PSFs as a function of spectra correspond well to the data for all sources and energy bands. Conclusions: Changes in the interpolation of the PSF from Monte Carlo data and in the procedure for construction of the energy-weighted effective areas have improved the correspondence between predicted and observed fluxes and spectra of celestial calibration sources, reducing false positives and obviating the need for post-hoc energy-dependent scaling factors. The new IRFs have been publicly available from the Agile Science Data Centre since November 25, 2011, while the changes in the analysis software will be distributed in an upcoming release

    Direct Evidence for Hadronic Cosmic-Ray Acceleration in the Supernova Renmant IC 443

    Full text link
    The Supernova Remnant (SNR) IC 443 is an intermediate-age remnant well known for its radio, optical, X-ray and gamma-ray energy emissions. In this Letter we study the gamma-ray emission above 100 MeV from IC 443 as obtained by the AGILE satellite. A distinct pattern of diffuse emission in the energy range 100 MeV-3 GeV is detected across the SNR with its prominent maximum (source "A") localized in the Northeastern shell with a flux F = (47 \pm 10) 10^{-8} photons cm^{-2} s^{-1} above 100 MeV. This location is the site of the strongest shock interaction between the SNR blast wave and the dense circumstellar medium. Source "A" is not coincident with the TeV source located 0.4 degree away and associated with a dense molecular cloud complex in the SNR central region. From our observations, and from the lack of detectable diffuse TeV emission from its Northeastern rim, we demonstrate that electrons cannot be the main emitters of gamma-rays in the range 0.1-10 GeV at the site of the strongest SNR shock. The intensity, spectral characteristics, and location of the most prominent gamma-ray emission together with the absence of co-spatial detectable TeV emission are consistent only with a hadronic model of cosmic-ray acceleration in the SNR. A high-density molecular cloud (cloud "E") provides a remarkable "target" for nucleonic interactions of accelerated hadrons: our results show enhanced gamma-ray production near the molecular cloud/shocked shell interaction site. IC 443 provides the first unambiguous evidence of cosmic-ray acceleration by SNRs.Comment: 5 pages, 2 figures; accepted by ApJLetters on Jan 21, 201

    Detection of Gamma-Ray Emission from the Vela Pulsar Wind Nebula with AGILE

    Full text link
    Pulsars are known to power winds of relativistic particles that can produce bright nebulae by interacting with the surrounding medium. These pulsar wind nebulae (PWNe) are observed in the radio, optical, x-rays and, in some cases, also at TeV energies, but the lack of information in the gamma-ray band prevents from drawing a comprehensive multiwavelength picture of their phenomenology and emission mechanisms. Using data from the AGILE satellite, we detected the Vela pulsar wind nebula in the energy range from 100 MeV to 3 GeV. This result constrains the particle population responsible for the GeV emission, probing multivavelength PWN models, and establishes a class of gamma-ray emitters that could account for a fraction of the unidentified Galactic gamma-ray sources.Comment: Accepted by Science; first published online on December 31, 2009 in Science Express. Science article and Supporting Online Material are available at http://www.sciencemag.or

    Agile Detection of Delayed Gamma-Ray Emission from the Short Gamma-Ray Burst GRB 090510

    Full text link
    Short gamma-ray bursts (GRBs), typically lasting less than 2 s, are a special class of GRBs of great interest. We report the detection by the AGILE satellite of the short GRB 090510 which shows two clearly distinct emission phases: a prompt phase lasting ~ 200 msec and a second phase lasting tens of seconds. The prompt phase is relatively intense in the 0.3-10 MeV range with a spectrum characterized by a large peak/cutoff energy near 3 MeV, in this phase, no significant high-energy gamma-ray emission is detected. At the end of the prompt phase, intense gamma-ray emission above 30 MeV is detected showing a power-law time decay of the flux of the type t^-1.3 and a broad-band spectrum remarkably different from that of the prompt phase. It extends from sub-MeV to hundreds of MeV energies with a photon index alpha ~ 1.5. GRB 090510 provides the first case of a short GRB with delayed gamma-ray emission. We present the timing and spectral data of GRB 090510 and briefly discuss its remarkable properties within the current models of gamma-ray emission of short GRBs.Comment: Accepted by the Astrophysical Journal Letters on September 11, 200
    • …
    corecore