14 research outputs found

    Biodegradable fluorescent nanoparticles for endoscopic detection of colorectal carcinogenesis.

    No full text
    Early and comprehensive endoscopic detection of colonic dysplasia-the most clinically significant precursor lesion to colorectal adenocarcinoma-provides an opportunity for timely, minimally invasive intervention to prevent malignant transformation. Here, the development and evaluation of biodegradable near-infrared fluorescent silica nanoparticles (FSN) that have the potential to improve adenoma detection during fluorescence-assisted white-light colonoscopic surveillance in rodent and human-scale models of colorectal carcinogenesis is described. FSNs are biodegradable (t(1/2) of 2.7 weeks), well-tolerated, and enable detection and delineation of adenomas as small as 0.5 mm(2) with high tumor-to-background ratios. Furthermore, in the human scale, APC(1311/+) porcine model, the clinical feasibility and benefit of using FSN-guided detection of colorectal adenomas using video-rate fluorescence-assisted white-light endoscopy is demon-strated. Since nanoparticles of similar size (e.g., 100-150 nm) or composition (i.e., silica and silica/gold hybrid) have already been successfully translated to the clinic, and clinical fluorescent/white-light endoscopy systems are becoming more readily available, there is a viable path towards clinical translation of the proposed strategy for early colorectal cancer detection and prevention in high-risk patients

    A protease-activated, near-infrared fluorescent probe for early endoscopic detection of premalignant gastrointestinal lesions.

    No full text
    Fluorescence imaging is currently being actively developed for surgical guidance; however, it remains underutilized for diagnostic and endoscopic surveillance of incipient colorectal cancer in highrisk patients. Here we demonstrate the utility and potential for clinical translation of a fluorescently labeled cathepsin-activated chemical probe to highlight gastrointestinal lesions. This probe stays optically dark until it is activated by proteases produced by tumor-associated macrophages and accumulates within the lesions, enabling their detection using an endoscope outfitted with a fluorescence detector. We evaluated the probe in multiple murine models and a human-scale porcine model of gastrointestinal carcinogenesis. The probe provides fluorescence-guided surveillance of gastrointestinal lesions and augments histopathological analysis by highlighting areas of dysplasia as small as 400 μm, which were visibly discernible with significant tumor-to-background ratios, even in tissues with a background of severe inflammation and ulceration. Given these results, we anticipate that this probe will enable sensitive fluorescence-guided biopsies, even in the presence of highly inflamed colorectal tissue, which will improve early diagnosis to prevent gastrointestinal cancers
    corecore