7 research outputs found

    SoftSCREEN – Soft Shape-shifting Capsule Robot for Endoscopy based on Eversion Navigation

    Get PDF

    Ordering effect of protein surfaces on water dynamics: NMR relaxation study

    No full text
    Proteins in solution affect the structural and dynamic properties of the bulk water at the protein-water interface, resulting in a contribution to the order of the hydration water. Theoretical and experimental NMR relaxation methods were developed to study the dynamic properties of water molecules in the protein hydration shell. Water non-selective and selective relaxation rates, were shown to be sensitive to contributions from ordered solvent molecules at protein surface. The average rotational correlation time of water molecules in the protein hydration shell was determined for three protein systems of different size: ribonuclease A, human serum albumin and fibrinogen. The knowledge of these properties is an important step toward the determination of the size of the water ordering contributions originate in proteins systems

    An image formation model for Secondary Ion Mass Spectrometry imaging of biological tissue samples RID A-6953-2008

    No full text
    Secondary Ion Mass Spectrometry (SIMS) can provide distribution images of elements and molecular fragments with high sensitivity and spatial resolution. This study aims to exploit the potential of this modality as an imaging technique for biomedical applications. A model of image generation was developed and validated on experimental SIMS images. The model allowed for the selection of standard distance deviation (SDD) and nearest neighbor index (NNI) as suitable indices for the characterization of SIMS images, as they have been associated with sample morphology. Two regression models were proposed to correlate the SDD index and NNI with an index of effectiveness and acquisition parameters. The SDD index, due to its linear relationship with the image noise parameter, was less sensitive to noise. The model was then applied to study the effect of instrumental and analytical parameters, such as pre-sputtering time, on image generation. (C) 2010 Elsevier B. V. All rights reserved

    Metal-Ligand Recognition Index determination by NMR proton relaxation study

    No full text
    In this study, we developed and validated a new proposed parameter quantifying the interaction strength between natural and/or synthetic molecules with paramagnetic metal ions. The Metal ion Recognition Index, Miri, is a quantitative parameter to describe the proton environment and to define their involvement in the inner and/or outer sphere of the paramagnetic metal ion. The method is based on the analysis of NMR proton spin-lattice relaxation rates of a specific ligand in both the diamagnetic and paramagnetic conditions. The proposed procedure is also useful to calculate the ligand proton spin-lattice relaxation rate in the paramagnetic bound conditions, which is typically very difficult to determine experimentally. Miri was used to compare the ligand proton involvement toward different paramagnetic species, in particular the Copper(II)-Piroxicam system. Copper(II)-Piroxicam complex is one of the most active anti-inflammatory and anti-arthritic species. Miri provides an opportunity to improve our knowledge of metal-ligand complexes that play a fundamental role in bioinorganic interactions

    Sodium hyaluronate-g-2-((N-(6-aminohexyl)-4-methoxyphenyl)sulfonamido)-N-hydroxyacetamide with enhanced affinity towards MMP12 catalytic domain to be used as visco-supplement with increased degradation resistance

    No full text
    The present paper describes the functionalization of sodium hyaluronate (NaHA) with a small molecule (2-((N-(6-aminohexyl)-4-methoxyphenyl)sulfonamido)-N-hydroxyacetamide) (MMPI) having proven inhibitory activity against membrane metalloproteins involved in inflammatory processes (i.e. MMP12). The obtained derivative (HA-MMPI) demonstrated an increased resistance to the in-vitro degradation by hyaluronidase, viscoelastic properties close to those of healthy human synovial fluid, cytocompatibility towards human chondrocytes and nanomolar affinity towards MMP 12. Thus, HA-MMPI can be considered a good candidate as viscosupplement in the treatment of knee osteoarticular disease

    Determination of nano and microplastic particles in hypersaline lakes by multiple methods

    No full text
    Microplastics and nanoplastics have a range of impacts on the aquatic environment and present major challenges to their mitigation and management. Their transport and fate depend on their composition, form, and the characteristics of the receiving environment. We explore the spatial and temporal dynamics of plastic particles in the world’s second-largest hypersaline lake, combining information from microscopic, thermal gravimetric, and fractional methods. Studies on microplastic and nanoplastic pollution in these important environments are scarce, and there is limited understanding of their dynamics and fate. Our results for Urmia Lake (Iran) in 2016 and 2019 show a discrepancy in the composition and quantity of microplastics measured in river tributaries to the lake and the lake itself, suggesting an active microplastic sink. Potential sink mechanisms in hypersaline lakes are explored. The present study indicates that microplastics have different transport mechanisms and fate in these extreme environments, compared to lake and ocean environments
    corecore