36 research outputs found
Acoplamiento microextracción en fase sólida-cromatografía.
RESUMEN
Esta tesis va dirigida al estudio del acoplamiento microextracción en fase sólida (SPME)-cromatografía. Abarca aspectos poco tratados en la bibliografía como el acoplamiento SPME-cromatografía líquida (CL) convencional y la formación de derivados en la fibra.
El primer objetivo específico consiste en el estudio de la configuración SPME sobre fibras y CL convencional, los analitos elegidos fueron aminas alifáticas y anfetaminas. Se demostró la utilidad del reactivo FMOC para su determinación en matrices acuosas y de aire, así como en muestras de orina. Se estudiaron diferentes opciones de acoplamiento SPME-derivatización. En la determinación de anfetaminas, se dedicó una parte a la determinación enantiomérica empleando el reactivo quiral OPA-NAC.
El segundo objetivo específico consiste en el acoplamiento SPME-cromatografía de gases (CG) para la determinación de los principales compuestos orgánicos volátiles legislados en materia de aguas. El procedimiento de muestreo se realizó mediante SPME en espacio de cabeza de la muestra como alternativa a la inyección directa, con el fin de evitar las principales dificultades asociadas a la técnica de extracción líquido-líquido, como son las bajas sensibilidad y selectividad.
El tercer objetivo específico que se planteó es el acoplamiento SPME en tubo-CL capilar. En el primer apartado se comparan las ventajas y desventajas de este acoplamiento con columna abierta y con columna empaquetada, con la configuración de la SPME sobre fibras-CL convencional para la determinación de triazinas. En el segundo apartado se propone un procedimiento basado en la configuración de SPME en tubo con columna abierta probando dos capilares con distinto diámetro interno y espesor de fase, para llevar a cabo el screening de triazinas y pesticidas organofosforados.
Resumiendo, esta tesis contribuye a la reducción de la manipulación de la muestra durante las etapas de extracción y derivatización. Los trabajos desarrollados han supuesto una contribución importante al aplicar la derivatización con distintas metodologías a distintos analitos y muestras. También contribuye a la miniaturización de sistemas, al desarrollo de los acoplamientos SPME-CL, al conocimiento de los métodos de screening de muestras y a la mejora de la sensibilidad para la determinación de triazinas y pesticidas organofosforados mediante SPME en tubo y CL capilar.
__________________________________________________________________________________________________The Thesis is about the study of three different couplings between solid-phase microextraction (SPME) and chromatography.
The first objective consists of the configuration SPME-on-fibre and conventional liquid chromatography (LC). The analytes selected were aliphatic amines and amphetamines. The utility of the FMOC reagent was successful in water and air determinations. As regards the amphetamines determination, it was studied an enantiomeric analysis using the chiral reagent OPA-NAC.
The second objective consists of the configuration SPME-gas chromatography for the determination of the main volatile organic compounds in water legislation. The sampling procedure was carried out in the sample headspace in order to avoid some problems related to the liquid-liquid extraction methodology, such as, poor sensitivity and selectivity.
The third objective consists of the coupling in-tube-SPME and capillary liquid chromatography. In the first place, the advantages and disadvantages of this configuration, with an open column and with a packed column, were compared with the configuration of SPME-on-fibre and conventional LC for the determination of triazines. In the second place, the organophosphorous pesticides were determined by means the in-tube-SPME with an open column configuration.
To sum up, this thesis is an important contribution to the reduction of the sample preparation
Mass spectrometric detection of biomarkers for early assessment of intraamniotic fluid infection
Peer reviewe
Gold Nanoparticle-Assisted Virus Formation by Means of the Delivery of an Oncolytic Adenovirus Genome
[EN] Oncolytic adenoviruses are a therapeutic alternative to treat cancer based on their ability to replicate selectively in tumor cells. However, their use is limited mainly by the neutralizing antibody (Nab) immune response that prevents repeated dosing. An alternative to facilitate the DNA access to the tumor even in the presence of anti-viral Nabs could be gold nanoparticles able to transfer DNA molecules. However, the ability of these nanoparticles to carry large DNA molecules, such as an oncolytic adenovirus genome, has not been studied. In this work, gold nanoparticles were functionalized with different amounts of polyethylenimine to transfer in a safe and efficient manner a large oncolytic virus genome. Their transfer efficacy and final effect of the oncolytic virus in cancer cells are studied. For each synthesized nanoparticle, (a) DNA loading capacity, (b) complex size, (c) DNA protection ability, (d) transfection efficacy and (e) cytotoxic effect were studied. We observed that small gold nanoparticles (70-80 nm in diameter) protected DNA against nucleases and were able to transfect the ICOVIR-15 oncolytic virus genome encoded in pLR1 plasmid. In the present work, efficient transgene RNA expression, luciferase activity and viral cytopathic effect on cancer cells are reported. These results suggest gold nanoparticles to be an efficient and safe vector for oncolytic adenovirus genome transfer.This research was supported by University of Valencia 'Ayuda a la Investigacion', Asociacion Pablo Ugarte and European Regional Development Fund (VLC-CAMPUS).Sendra, L.; Miguel, A.; Navarro-Plaza, MC.; Herrero, MJ.; De La Higuera, J.; Cháfer-Pericás, C.; Aznar, E.... (2020). Gold Nanoparticle-Assisted Virus Formation by Means of the Delivery of an Oncolytic Adenovirus Genome. Nanomaterials. 10(6):1-16. https://doi.org/10.3390/nano10061183S116106Cebrián, V., Martín-Saavedra, F., Yagüe, C., Arruebo, M., Santamaría, J., & Vilaboa, N. (2011). Size-dependent transfection efficiency of PEI-coated gold nanoparticles. Acta Biomaterialia, 7(10), 3645-3655. doi:10.1016/j.actbio.2011.06.018Shukla, R., Bansal, V., Chaudhary, M., Basu, A., Bhonde, R. R., & Sastry, M. (2005). Biocompatibility of Gold Nanoparticles and Their Endocytotic Fate Inside the Cellular Compartment: A Microscopic Overview. Langmuir, 21(23), 10644-10654. doi:10.1021/la0513712Niidome, T., Nakashima, K., Takahashi, H., & Niidome, Y. (2004). Preparation of primary amine-modified gold nanoparticles and their transfection ability into cultivated cellsElectronic Supplementary Information (ESI) available: A TEM image of the complex at a w/w ratio of 11. See http://www.rsc.org/suppdata/cc/b4/b406189f/. Chemical Communications, (17), 1978. doi:10.1039/b406189fSandhu, K. K., McIntosh, C. M., Simard, J. M., Smith, S. W., & Rotello, V. M. (2001). Gold Nanoparticle-Mediated Transfection of Mammalian Cells. Bioconjugate Chemistry, 13(1), 3-6. doi:10.1021/bc015545cThomas, M., & Klibanov, A. M. (2003). Conjugation to gold nanoparticles enhances polyethylenimine’s transfer of plasmid DNA into mammalian cells. Proceedings of the National Academy of Sciences, 100(16), 9138-9143. doi:10.1073/pnas.1233634100Noh, S. M., Kim, W.-K., Kim, S. J., Kim, J. M., Baek, K.-H., & Oh, Y.-K. (2007). Enhanced cellular delivery and transfection efficiency of plasmid DNA using positively charged biocompatible colloidal gold nanoparticles. Biochimica et Biophysica Acta (BBA) - General Subjects, 1770(5), 747-752. doi:10.1016/j.bbagen.2007.01.012Chan, T. G., Morse, S. V., Copping, M. J., Choi, J. J., & Vilar, R. (2018). Targeted Delivery of DNA-Au Nanoparticles across the Blood-Brain Barrier Using Focused Ultrasound. ChemMedChem, 13(13), 1311-1314. doi:10.1002/cmdc.201800262Mbatha, L. S., & Singh, M. (2019). Starburst Poly(amidoamine) Dendrimer Grafted Gold Nanoparticles as a Scaffold for Folic Acid-Targeted Plasmid DNA Delivery In Vitro. Journal of Nanoscience and Nanotechnology, 19(4), 1959-1970. doi:10.1166/jnn.2019.15798Cobley, C. M., Chen, J., Cho, E. C., Wang, L. V., & Xia, Y. (2011). Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem. Soc. Rev., 40(1), 44-56. doi:10.1039/b821763gCho, E. C., Au, L., Zhang, Q., & Xia, Y. (2010). The Effects of Size, Shape, and Surface Functional Group of Gold Nanostructures on Their Adsorption and Internalization by Cells. Small, 6(4), 517-522. doi:10.1002/smll.200901622Pissuwan, D., Niidome, T., & Cortie, M. B. (2011). The forthcoming applications of gold nanoparticles in drug and gene delivery systems. Journal of Controlled Release, 149(1), 65-71. doi:10.1016/j.jconrel.2009.12.006Rosi, N. L., Giljohann, D. A., Thaxton, C. S., Lytton-Jean, A. K. R., Han, M. S., & Mirkin, C. A. (2006). Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation. Science, 312(5776), 1027-1030. doi:10.1126/science.1125559Ghosh, P. S., Kim, C.-K., Han, G., Forbes, N. S., & Rotello, V. M. (2008). Efficient Gene Delivery Vectors by Tuning the Surface Charge Density of Amino Acid-Functionalized Gold Nanoparticles. ACS Nano, 2(11), 2213-2218. doi:10.1021/nn800507tMassich, M. D., Giljohann, D. A., Seferos, D. S., Ludlow, L. E., Horvath, C. M., & Mirkin, C. A. (2009). Regulating Immune Response Using Polyvalent Nucleic Acid−Gold Nanoparticle Conjugates. Molecular Pharmaceutics, 6(6), 1934-1940. doi:10.1021/mp900172mRyou, S.-M., Kim, S., Jang, H. H., Kim, J.-H., Yeom, J.-H., Eom, M. S., … Lee, K. (2010). Delivery of shRNA using gold nanoparticle–DNA oligonucleotide conjugates as a universal carrier. Biochemical and Biophysical Research Communications, 398(3), 542-546. doi:10.1016/j.bbrc.2010.06.115Stobiecka, M., & Hepel, M. (2011). Double-shell gold nanoparticle-based DNA-carriers with poly-l-lysine binding surface. Biomaterials, 32(12), 3312-3321. doi:10.1016/j.biomaterials.2010.12.064Sharma, A., Tandon, A., Tovey, J. C. K., Gupta, R., Robertson, J. D., Fortune, J. A., … Mohan, R. R. (2011). Polyethylenimine-conjugated gold nanoparticles: Gene transfer potential and low toxicity in the cornea. Nanomedicine: Nanotechnology, Biology and Medicine, 7(4), 505-513. doi:10.1016/j.nano.2011.01.006Yan, X., Blacklock, J., Li, J., & Möhwald, H. (2011). One-Pot Synthesis of Polypeptide–Gold Nanoconjugates for in Vitro Gene Transfection. ACS Nano, 6(1), 111-117. doi:10.1021/nn202939sShan, Y., Luo, T., Peng, C., Sheng, R., Cao, A., Cao, X., … Shi, X. (2012). Gene delivery using dendrimer-entrapped gold nanoparticles as nonviral vectors. Biomaterials, 33(10), 3025-3035. doi:10.1016/j.biomaterials.2011.12.045Trigueros, Domènech, Toulis, & Marfany. (2019). In Vitro Gene Delivery in Retinal Pigment Epithelium Cells by Plasmid DNA-Wrapped Gold Nanoparticles. Genes, 10(4), 289. doi:10.3390/genes10040289Munsell, E. V., Fang, B., & Sullivan, M. O. (2018). Histone-Mimetic Gold Nanoparticles as Versatile Scaffolds for Gene Transfer and Chromatin Analysis. Bioconjugate Chemistry, 29(11), 3691-3704. doi:10.1021/acs.bioconjchem.8b00611Dhanya, G. R., Caroline, D. S., Rekha, M. R., & Sreenivasan, K. (2018). Histidine and arginine conjugated starch-PEI and its corresponding gold nanoparticles for gene delivery. International Journal of Biological Macromolecules, 120, 999-1008. doi:10.1016/j.ijbiomac.2018.08.142Hersey, P., & Gallagher, S. (2013). Intralesional immunotherapy for melanoma. Journal of Surgical Oncology, 109(4), 320-326. doi:10.1002/jso.23494Mastrangelo, M. J., Maguire, H. C., Eisenlohr, L. C., Laughlin, C. E., Monken, C. E., McCue, P. A., … Lattime, E. C. (1999). Intratumoral recombinant GM-CSF-encoding virus as gene therapy in patients with cutaneous melanoma. Cancer Gene Therapy, 6(5), 409-422. doi:10.1038/sj.cgt.7700066Senzer, N. N., Kaufman, H. L., Amatruda, T., Nemunaitis, M., Reid, T., Daniels, G., … Nemunaitis, J. J. (2009). Phase II Clinical Trial of a Granulocyte-Macrophage Colony-Stimulating Factor–Encoding, Second-Generation Oncolytic Herpesvirus in Patients With Unresectable Metastatic Melanoma. Journal of Clinical Oncology, 27(34), 5763-5771. doi:10.1200/jco.2009.24.3675Goins, W. F., Huang, S., Cohen, J. B., & Glorioso, J. C. (2014). Engineering HSV-1 Vectors for Gene Therapy. Herpes Simplex Virus, 63-79. doi:10.1007/978-1-4939-0428-0_5Dummer, R., Rochlitz, C., Velu, T., Acres, B., Limacher, J.-M., Bleuzen, P., … Urosevic, M. (2008). Intralesional Adenovirus-mediated Interleukin-2 Gene Transfer for Advanced Solid Cancers and Melanoma. Molecular Therapy, 16(5), 985-994. doi:10.1038/mt.2008.32GUPTA, P., SU, Z., LEBEDEVA, I., SARKAR, D., SAUANE, M., EMDAD, L., … DENT, P. (2006). mda-7/IL-24: Multifunctional cancer-specific apoptosis-inducing cytokine. Pharmacology & Therapeutics, 111(3), 596-628. doi:10.1016/j.pharmthera.2005.11.005Abbink, P., Lemckert, A. A. C., Ewald, B. A., Lynch, D. M., Denholtz, M., Smits, S., … Barouch, D. H. (2007). Comparative Seroprevalence and Immunogenicity of Six Rare Serotype Recombinant Adenovirus Vaccine Vectors from Subgroups B and D. Journal of Virology, 81(9), 4654-4663. doi:10.1128/jvi.02696-06Mast, T. C., Kierstead, L., Gupta, S. B., Nikas, A. A., Kallas, E. G., Novitsky, V., … Shiver, J. W. (2010). International epidemiology of human pre-existing adenovirus (Ad) type-5, type-6, type-26 and type-36 neutralizing antibodies: Correlates of high Ad5 titers and implications for potential HIV vaccine trials. Vaccine, 28(4), 950-957. doi:10.1016/j.vaccine.2009.10.145Barouch, D. H., Kik, S. V., Weverling, G. J., Dilan, R., King, S. L., Maxfield, L. F., … Goudsmit, J. (2011). International seroepidemiology of adenovirus serotypes 5, 26, 35, and 48 in pediatric and adult populations. Vaccine, 29(32), 5203-5209. doi:10.1016/j.vaccine.2011.05.025Na, Y., Nam, J.-P., Hong, J., Oh, E., Shin, H. C., Kim, H. S., … Yun, C.-O. (2019). Systemic administration of human mesenchymal stromal cells infected with polymer-coated oncolytic adenovirus induces efficient pancreatic tumor homing and infiltration. Journal of Controlled Release, 305, 75-88. doi:10.1016/j.jconrel.2019.04.040Kasala, D., Yoon, A.-R., Hong, J., Kim, S. W., & Yun, C.-O. (2016). Evolving lessons on nanomaterial-coated viral vectors for local and systemic gene therapy. Nanomedicine, 11(13), 1689-1713. doi:10.2217/nnm-2016-0060Kwon, O.-J., Kang, E., Kim, S., & Yun, C.-O. (2011). Viral genome DNA/lipoplexes elicit in situ oncolytic viral replication and potent antitumor efficacy via systemic delivery. Journal of Controlled Release, 155(2), 317-325. doi:10.1016/j.jconrel.2011.06.014YOSHIHARA, C., HAMADA, K., KURODA, M., & KOYAMA, Y. (2011). Oncolytic plasmid: A novel strategy for tumor immuno-gene therapy. Oncology Letters, 3(2), 387-390. doi:10.3892/ol.2011.467Rojas, J. J., Guedan, S., Searle, P. F., Martinez-Quintanilla, J., Gil-Hoyos, R., Alcayaga-Miranda, F., … Alemany, R. (2010). Minimal RB-responsive E1A Promoter Modification to Attain Potency, Selectivity, and Transgene-arming Capacity in Oncolytic Adenoviruses. Molecular Therapy, 18(11), 1960-1971. doi:10.1038/mt.2010.173Rincón, E., Cejalvo, T., Kanojia, D., Alfranca, A., Rodríguez-Milla, M. Á., Hoyos, R. A. G., … García-Castro, J. (2017). Mesenchymal stem cell carriers enhance antitumor efficacy of oncolytic adenoviruses in an immunocompetent mouse model. Oncotarget, 8(28), 45415-45431. doi:10.18632/oncotarget.17557Carette, J. E., Graat, H. C. A., Schagen, F. H. E., Abou El Hassan, M. A. I., Gerritsen, W. R., & van Beusechem, V. W. (2005). Replication-dependent transgene expression from a conditionally replicating adenovirus via alternative splicing to a heterologous splice-acceptor site. The Journal of Gene Medicine, 7(8), 1053-1062. doi:10.1002/jgm.754Stanton, R. J., McSharry, B. P., Armstrong, M., Tomasec, P., & Wilkinson, G. W. G. (2008). Re-engineering adenovirus vector systems to enable high-throughput analyses of gene function. BioTechniques, 45(6), 659-668. doi:10.2144/000112993Bayo-Puxan, N., Cascallo, M., Gros, A., Huch, M., Fillat, C., & Alemany, R. (2006). Role of the putative heparan sulfate glycosaminoglycan-binding site of the adenovirus type 5 fiber shaft on liver detargeting and knob-mediated retargeting. Journal of General Virology, 87(9), 2487-2495. doi:10.1099/vir.0.81889-0Brust, M., Fink, J., Bethell, D., Schiffrin, D. J., & Kiely, C. (1995). Synthesis and reactions of functionalised gold nanoparticles. Journal of the Chemical Society, Chemical Communications, (16), 1655. doi:10.1039/c39950001655Guillem, V. M., Tormo, M., Revert, F., Benet, I., García-Conde, J., Crespo, A., & Aliño, S. F. (2002). Polyethyleneimine-based immunopolyplex for targeted gene transfer in human lymphoma celllines. The Journal of Gene Medicine, 4(2), 170-182. doi:10.1002/jgm.228Stuchbury, T., Shipton, M., Norris, R., Malthouse, J. P. G., Brocklehurst, K., Herbert, J. A. L., & Suschitzky, H. (1975). A reporter group delivery system with both absolute and selective specificity for thiol groups and an improved fluorescent probe containing the 7-nitrobenzo-2-oxa-1,3-diazole moiety. Biochemical Journal, 151(2), 417-432. doi:10.1042/bj1510417Moret, I., Esteban Peris, J., Guillem, V. M., Benet, M., Revert, F., Dası́, F., … Aliño, S. F. (2001). Stability of PEI–DNA and DOTAP–DNA complexes: effect of alkaline pH, heparin and serum. Journal of Controlled Release, 76(1-2), 169-181. doi:10.1016/s0168-3659(01)00415-1Lisitsyna, E. S., Lygo, O. N., Durandin, N. A., Dement’eva, O. V., Rudoi, V. M., & Kuzmin, V. A. (2012). Superquenching of SYBRGreen dye fluorescence in complex with DNA by gold nanoparticles. High Energy Chemistry, 46(6), 363-367. doi:10.1134/s0018143912060057Venkiteswaran, S., Thomas, T., & Thomas, T. J. (2016). Selectivity of polyethyleneimines on DNA nanoparticle preparation and gene transport. ChemistrySelect, 1(6), 1144-1150. doi:10.1002/slct.201600026Taranejoo, S., Liu, J., Verma, P., & Hourigan, K. (2015). A review of the developments of characteristics of PEI derivatives for gene delivery applications. Journal of Applied Polymer Science, 132(25), n/a-n/a. doi:10.1002/app.42096Del Papa, J., & Parks, R. (2017). Adenoviral Vectors Armed with Cell Fusion-Inducing Proteins as Anti-Cancer Agents. Viruses, 9(1), 13. doi:10.3390/v9010013Kazemi Oskuee, R., Dabbaghi, M., Gholami, L., Taheri-Bojd, S., Balali-Mood, M., Mousavi, S. H., & Malaekeh-Nikouei, B. (2018). Investigating the influence of polyplex size on toxicity properties of polyethylenimine mediated gene delivery. Life Sciences, 197, 101-108. doi:10.1016/j.lfs.2018.02.008Thomas, T. J., Tajmir-Riahi, H.-A., & Pillai, C. K. S. (2019). Biodegradable Polymers for Gene Delivery. Molecules, 24(20), 3744. doi:10.3390/molecules24203744Miciak, J. J., Hirshberg, J., & Bunz, F. (2018). Seamless assembly of recombinant adenoviral genomes from high-copy plasmids. PLOS ONE, 13(6), e0199563. doi:10.1371/journal.pone.019956
Gold Nanoparticle-Assisted Virus Formation by Means of the Delivery of an Oncolytic Adenovirus Genome
Oncolytic adenoviruses are a therapeutic alternative to treat cancer based on their ability to replicate selectively in tumor cells. However, their use is limited mainly by the neutralizing antibody (Nab) immune response that prevents repeated dosing. An alternative to facilitate the DNA access to the tumor even in the presence of anti-viral Nabs could be gold nanoparticles able to transfer DNA molecules. However, the ability of these nanoparticles to carry large DNA molecules, such as an oncolytic adenovirus genome, has not been studied. In this work, gold nanoparticles were functionalized with different amounts of polyethylenimine to transfer in a safe and efficient manner a large oncolytic virus genome. Their transfer efficacy and final effect of the oncolytic virus in cancer cells are studied. For each synthesized nanoparticle, (a) DNA loading capacity, (b) complex size, (c) DNA protection ability, (d) transfection efficacy and (e) cytotoxic effect were studied. We observed that small gold nanoparticles (70-80 nm in diameter) protected DNA against nucleases and were able to transfect the ICOVIR-15 oncolytic virus genome encoded in pLR1 plasmid. In the present work, efficient transgene RNA expression, luciferase activity and viral cytopathic effect on cancer cells are reported. These results suggest gold nanoparticles to be an efficient and safe vector for oncolytic adenovirus genome transfer
Artificial Intelligence on FDG PET Images Identifies Mild Cognitive Impairment Patients with Neurodegenerative Disease
[EN] The purpose of this project is to develop and validate a Deep Learning (DL) FDG PET imaging algorithm able to identify patients with any neurodegenerative diseases (Alzheimer's Disease (AD), Frontotemporal Degeneration (FTD) or Dementia with Lewy Bodies (DLB)) among patients with Mild Cognitive Impairment (MCI). A 3D Convolutional neural network was trained using images from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The ADNI dataset used for the model training and testing consisted of 822 subjects (472 AD and 350 MCI). The validation was performed on an independent dataset from La Fe University and Polytechnic Hospital. This dataset contained 90 subjects with MCI, 71 of them developed a neurodegenerative disease (64 AD, 4 FTD and 3 DLB) while 19 did not associate any neurodegenerative disease. The model had 79% accuracy, 88% sensitivity and 71% specificity in the identification of patients with neurodegenerative diseases tested on the 10% ADNI dataset, achieving an area under the receiver operating characteristic curve (AUC) of 0.90. On the external validation, the model preserved 80% balanced accuracy, 75% sensitivity, 84% specificity and 0.86 AUC. This binary classifier model based on FDG PET images allows the early prediction of neurodegenerative diseases in MCI patients in standard clinical settings with an overall 80% classification balanced accuracy.This work was financially supported by INBIO 2019 (DEEPBRAIN), INNVA1/2020/83(DEEPPET) funded by Generalitat Valenciana, and PID2019-107790RB-C22 funded by MCIN/AEI/10.13039/501100011033/. Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer's Association; Alzheimer's Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org).The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.Prats-Climent, J.; Gandia-Ferrero, MT.; Torres-Espallardo, I.; Álvarez-Sanchez, L.; Martinez-Sanchis, B.; Cháfer-Pericás, C.; Gómez-Rico, I.... (2022). Artificial Intelligence on FDG PET Images Identifies Mild Cognitive
Impairment Patients with Neurodegenerative Disease. Journal of Medical Systems. 46(8):1-13. https://doi.org/10.1007/s10916-022-01836-w11346
Lipid Peroxidation in Neurodegeneration
Neurodegenerative diseases have multiple social and economic impacts on society, and they are the cause of millions of deaths every year [...
Systematic review of brain and blood lipidomics in Alzheimer's disease mouse models
Alzheimer's disease (AD) diagnosis is based on invasive and expensive biomarkers. Regarding AD pathophysiological mechanisms, there is evidence of a link between AD and aberrant lipid homeostasis. Alterations in lipid composition have been observed in blood and brain samples, and transgenic mouse models represent a promising approach. Nevertheless, there is great variability among studies in mice for the determination of different types of lipids in targeted and untargeted methods. It could be explained by the different variables (model, age, sex, analytical technique), and experimental conditions used. The aim of this work is to review the studies on lipid alteration in brain tissue and blood samples from AD mouse models, focusing on different experimental parameters. As result, great disparity has been observed among the reviewed studies. Brain studies showed an increase in gangliosides, sphingomyelins, lysophospholipids and monounsaturated fatty acids and a decrease in sulfatides. In contrast, blood studies showed an increase in phosphoglycerides, sterols, diacylglycerols, triacylglycerols and polyunsaturated fatty acids, and a decrease in phospholipids, lysophospholipids and monounsaturated fatty acids. Thus, lipids are closely related to AD, and a consensus on lipidomics studies could be used as a diagnostic tool and providing insight into the mechanisms involved in AD
Assessment of Lipid Peroxidation in Alzheimer’s Disease Differential Diagnosis and Prognosis
Alzheimer’s disease (AD) and other dementias are becoming increasingly common in the older population, and the number of people affected is expected to increase in a few years. Nowadays, biomarkers used in early AD diagnosis are expensive and invasive. Therefore, this research field is growing. In fact, peroxidation by-products derived from the oxidation of brain lipids (arachidonic (AA), docosahexanoic (DHA) and adrenic acid (AdA)) could be potential biomarkers, participating in the mechanisms of inflammation, neurotoxicity and cell death in AD pathology. Previous studies have shown specificity between lipid peroxidation compounds and other dementias (e.g., Lewy bodies (DLB), frontotemporal dementia (FTD)), but more research is required. Lipid peroxidation compounds (prostaglandins, isoprostanes, isofurans, neuroprostanes, neurofurans, dihomo-isoprostanes and dihomo-isofurans) were analysed by liquid chromatography and mass spectrometry in plasma samples from participants classified into a healthy group (n = 80), a mild cognitive impairment due to AD group (n = 106), a mild dementia due to AD group (n = 70), an advanced dementia due to AD group (n = 11) and a group of other non-AD dementias (n = 20). Most of these compounds showed statistically significant differences between groups (p < 0.05), showing higher levels for the healthy and non-AD groups than the AD groups. Then, a multivariate analysis was carried out on these compounds, showing good diagnosis indexes (AUC 0.77, sensitivity 81.3%, positive predictive value 81%). Moreover, evaluating AD disease prognosis, two compounds (15-F2t-IsoP and 14(RS)-14-F4t-NeuroP) and three total parameters (isoprostanes, isofurans and neurofurans) showed significant differences among groups. Some compounds derived from the oxidation of AA, DHA and AdA have demonstrated their potential use in differential AD diagnosis. Specifically, 15-F2t-IsoP, 14(RS)-14-F4t-NeuroP and the total parameters for isoprostanes, isofurans and neurofurans have shown prognostic value for AD from its earliest stages to its most severe form
Multiresidue determination of antibiotics in feed and fish samples for food safety evaluation. Comparison of immunoassay vs LC-MS-MS
[EN] Antibiotic residues (sulfonamides and tetracyclines) were determined in Gilthead sea bream (Sparus aurata) and feed samples by means of immunoassays and LC-MS-MS (liquid chromatography-mass spectrometry 2). A preliminary study to know the withdrawal time of oxytetracycline in Gilthead sea bream samples was also conducted. It was carried out using immunoassays based on photometric detection of horseradish peroxidase (HRP) activity and time-resolved fluorometric detection of coproporphyrin of Platinum (II) (ELISA and TR-FIA, respectively). The results were compared to those obtained using an LC-MS-MS methodology. They showed that approximately 37 days would be the withdrawal time in order not to exceed the MRL and fish could be commercialized with safety. Regarding feed samples analysis, an LC-MS-MS method was optimized including sample treatment. Average recoveries (n = 6) ranging from 78 to 108% were obtained and precision of the method was between 0.2 and 3%. The same sample treatment was applied to the feed immunoanalysis obtaining satisfactory results.Finally, 20 fish and 4 feed samples were analysed in order to confirm the feasibility of the immunoassays for detecting antibiotic residues. Sulfonamide residues were not detected in any fish sample. Tetracycline residues were detected in some fish samples from marine farms, with total concentrations between 2.1 and 152 ng g -1. In all cases, the obtained results correlated well with those achieved by LC-MS-MS. Therefore, the new methodology allows for food safety of the medicated fish. © 2010 Elsevier LtdThe authors are grateful to the Spanish Ministerio de Ciencia e Innovacion (Project PET 2006-009-00) and to Generalitat Valenciana (ACOMP/2009/236) for financial support received.Cháfer Pericás, MC.; Maquieira Catala, Á.; Puchades, R.; Miralles, J.; Moreno, A. (2011). Multiresidue determination of antibiotics in feed and fish samples for food safety evaluation. Comparison of immunoassay vs LC-MS-MS. Food Control. 22(6):993-999. https://doi.org/10.1016/j.foodcont.2010.12.008S99399922
Dispersive solid-phase extraction and immunoassay with internal reference calibration using fatty acid-coated inorganic fluorescent nanoparticles
Dispersive solid-phase extraction (dSPE) using fatty acid-coated Eu2O3 nanoparticles (NPs) was developed, and a direct immunoassay was carried out employing these NPs as support. Secondary antibodies labeled with fluorophore groups were used as reporters, and the intrinsic optical properties of the Eu2O3 NPs were employed as an internal calibration of the detection system. The methodology was optimized for both dSPE¿NP amount, sample volume, extraction time, ionic strength, and pH¿and immunoassay¿immunoreagent concentrations, ionic strength, and incubation time. As proof of concept, the methodology was applied to the bovine serum albumin (BSA)/anti-BSA system, and precision of the method was between 5% and 17% with an IC50 of 100 nM. Then, water samples with high saline content (sea water) were assayed to observe the matrix effect, and average recoveries (n = 3) between 78% and 108% were obtained, demonstrating the reliability of the developed analytical method. Finally, the simultaneous dSPE¿immunoassay methodology was applied to other compounds with very different chemical characteristics such as an oligonucleotide, the antibiotic sulfamerazine, and the pesticide chlorpyriphos. Although the IC50 values for sulfamerazine were approximately 2400 nM, satisfactory standard curves were obtained. However, poor reproducibility and sensitivity results were obtained for the oligonucleotide and chlorpyriphos preliminary assays.The authors acknowledge the Generalitat Valenciana (Project Prometeo 2010, 008) for the financial support received. C.C.-P. gratefully thanks the Spanish Ministerio de Educacion y Ciencia for a postdoctoral contract with financing from the European Social Fund.Cháfer Pericás, MC.; Balaguer, Á.; Maquieira Catala, Á.; Puchades Pla, R. (2013). Dispersive solid-phase extraction and immunoassay with internal reference calibration using fatty acid-coated inorganic fluorescent nanoparticles. Analytical Biochemistry. 432(1):31-37. https://doi.org/10.1016/j.ab.2012.09.019S3137432