4 research outputs found
Estudio de homogeneidad de la capa l铆mite atm贸sf茅rica y su aplicaci贸n a la modelizaci贸n num茅rica del arrastre y deposici贸n de gotas de agua procedentes de una torre de refrigeraci贸n de tiro forzado
Los equipos de climatizaci on, a partir de un cierto nivel de potencia, suelen
utilizar agua en su circuito de condensaci on para extraer el calor del ciclo t茅rmico.
La refrigeraci贸n del agua de este circuito se efect ua generalmente mediante torres de
refrigeraci贸n, en las que se puede dar una emisi贸n al ambiente de gotas de agua de
peque帽o tama帽o. Energ茅ticamente, las torres de refrigeraci贸n representan el sistema de
enfriamiento de mayor rendimiento en comparaci贸n con otras alternativas. Sin embargo,
algunas administraciones locales est谩n restringiendo o dificultando la instalaci贸n de torres
de refrigeraci贸n por sus implicaciones medioambientales, como por ejemplo, el riesgo de
contaminaci贸n por Legionella, la cual puede ser emitida al ambiente a trav茅s de las gotas
de peque帽o tama帽o que escapan de las torres de refrigeraci贸n.Escuela T茅cnica Superior de Ingenier铆a IndustrialUniversidad Polit茅cnica de Cartagen
Numerical study and experimental validation of the water films and the detachment of drops on drift eliminators
Water drift emitted from cooling towers is objectionable for several reasons, mainly due to human health hazards. Generation and control of drift depends mostly on the drift eliminator, a device installed in mechanical cooling towers to prevent the escape of droplets (drift). These eliminators induce a rapid alternation of direction changes, and then the droplets cannot follow the path lines of the airflow within the channels of the eliminator and impact on the plates of it, falling back to the cooling tower ground.
This paper focuses on the numerical study of a type of drift eliminator, validated by experimental tests. Three main aspects are considered: the water film formed on the plates of drift eliminators, the size of water droplets detached from this film and the condition of the detachment of these droplets. Good agreement is obtained between numerical and experimental results. The study shows that the behavior of water droplets is very influenced by the air velocity inside the cooling tower.This research is sponsored by the Spanish Government (Projects ENE2010-21679-C02-01 and -02), as well as by the Seneca-Agency for Science and Technology of the Region of Murcia, Spain (Project 15184/PI/10)
CFD modelization of Legionella鈥檚 atmospheric dispersion in the explosive outbreak in Murcia.
Cooling towers, among other equipments, could have an important atmospheric impact, becoming a source of pollutants or biological agents. The most important, due to its frequency and importance of the outbreaks, is Legionella. Since its discovery in 1976 in Philadelphia, where the total number of cases reached more than 200 of those more than 30 died, several outbreaks have been reported causing tens of deaths. The most important one due to its spread took place in the city of Murcia (Spain), in 2001, with more than 600 cases and where 23 out of 70 investigated cooling towers were positive to Legionella Pneumophila.
In the present work, a validated numerical modelization using the Computational Fluid Dynamics (CFD) code ANSYS Fluent is employed to simulate the dispersion of the drift from the cooling tower causative of the outbreak in the real urban environment of Murcia in the days of highest emissions, which are located by means of the number of infections given by the epidemic curve. The results of the modelization are compared with the results of the epidemiological investigation carried out by the Epidemiology Service at the Consejer铆a de Sanidad de Murcia.
The main objective of this modelization is to predict a cooling tower influence area, what will help to reduce environmental and personal impact in case of an eventual infection of its water, or, as it is used in here, to improve the resources used to find the focus of infection after an outbreak has taken place.
The modelization was previously validated using data from an experimental cooling tower installation. The data set that was measured includes cooling tower parameters such as water and air flow, inlet and outlet water and air temperature, atmospheric conditions (by means of a meteorological tower and meteorological station) but also droplet diameter at the cooling tower outlet and droplet deposition in the surroundings using the water sensitive paper technique. Several cases were employed to validate the modelization, including a wide range of atmospheric conditions and cooling tower configurations.This research is founded by the Research Projects ENE2007-68106-CO2-02, ENE2010-
21679-C02-01 of the National Plan of R+D (Ministerio de Ciencia e Innovaci贸n, Spain)
Study of the dispersion and reach of water droplets from cooling towers in urban environments using numerical simulation
[SPA] Las torres de refrigeraci贸n son uno de los sistemas m谩s eficientes para disipar el calor de las centrales el茅ctricas, de los sistemas de refrigeraci贸n que emplean agua como fluido caloportador y del aire acondicionado en edificios y procesos industriales. Por lo tanto, el comportamiento de estos dispositivos todav铆a merece la atenci贸n de investigadores e ingenieros. Estos sistemas son dispositivos de transferencia de calor por evaporaci贸n en los que el aire atmosf茅rico enfr铆a el agua caliente, con contacto directo entre el agua y el aire, evaporando parte del agua. Indirectamente, la sustituci贸n de las torres de refrigeraci贸n por aparatos menos eficientes contribuye a aumentar el consumo de energ铆a y, por lo tanto, al cambio clim谩tico.
En esta Tesis Doctoral se presenta un modelo num茅rico CFD para simular la dispersi贸n del arrastre emitido por torres de refrigeraci贸n mec谩nicas localizadas en 谩reas urbanas. Las ecuaciones promediadas de Navier-Stokes para el movimiento de aire son discretizadas a trav茅s de un m茅todo de vol煤menes finitos, con el modelo k- para simular el flujo turbulento. Se emplea un conjunto apropiado de condiciones de contorno, con el fin de evitar el problema de no homogeneidad en la Capa L铆mite Atmosf茅rica (ABL). Se utiliza un modelo euleriano-lagrangiano para simular el movimiento del aire-gotas de agua, teniendo en cuenta los efectos de la evaporaci贸n. Los resultados se validan con datos experimentales de la deposici贸n de gotas emitidas por una torre de refrigeraci贸n piloto, obtenidos mediante una t茅cnica basada en papeles hidrosensibles. Los datos meteorol贸gicos locales se miden a trav茅s de diferentes equipos, principalmente una torre meteorol贸gica instalada en las cercan铆as de la torre de refrigeraci贸n. Para mejorar los resultados del m茅todo, se realiza una simulaci贸n segmentada. Cada caso experimental se subdivide en tres casos, en relaci贸n con la direcci贸n del viento. Haciendo esto, es posible reproducir mejor las fluctuaciones de la direcci贸n del viento obtenidas durante la medici贸n experimental. El resultado de la simulaci贸n segmentada es una mejor correspondencia entre datos num茅ricos y experimentales cuando se miden altas fluctuaciones de la direcci贸n del viento. Se obtiene la influencia de variables tales como la temperatura de bulbo seco, la humedad
ambiental y la temperatura de salida de las gotas desde la torre de refrigeraci贸n sobre la deposici贸n de gotas de agua y sobre el tama帽o del 谩rea afectada para torres de refrigeraci贸n de tiro mec谩nico. La deposici贸n de gotas de agua disminuye a medida que aumenta el proceso de evaporaci贸n (aumento de la temperatura del bulbo seco, disminuci贸n de la humedad). Adem谩s, la temperatura de bulbo h煤medo de las gotas tiene una influencia directa en la evaporaci贸n de 茅stas, ya que la evaporaci贸n es mayor cuando este par谩metro aumenta. El procedimiento num茅rico ha demostrado ser 煤til para caracterizar la dispersi贸n y el alcance de las gotas de agua de torres de refrigeraci贸n mec谩nicas en entornos complejos. Finalmente, el estudio se extiende a un nuevo entorno urbano para reproducir el brote explosivo de legionelosis en la ciudad de Murcia en 2001. Se comparan los resultados de la caracterizaci贸n de la dispersi贸n y el alcance de las gotas de la torre de refrigeraci贸n causante del brote con los resultados de la investigaci贸n epidemiol贸gica realizada por el Servicio de Epidemiolog铆a para encontrar el foco de la infecci贸n. Los resultados de la modelizaci贸n del brote muestran que los patrones de dispersi贸n de las gotas est谩n de acuerdo con un brote explosivo, ya que la mayor parte del arrastre emitido por la torre de refrigeraci贸n alcanza 谩reas peatonales y la distribuci贸n de tama帽o de estas gotas es lo suficientemente grande para contener las bacterias. Adem谩s, se podr铆a haber reducido el estudio caso-control desarrollado para encontrar la fuente del brote, teniendo en cuenta s贸lo uno de los m茅todos de an谩lisis de las 谩reas de exposici贸n. Como se muestra aqu铆, esta modelizaci贸n es 煤til para predecir el 谩rea de influencia de una torre de refrigeraci贸n, lo que ayudar谩 a reducir el impacto ambiental y personal en caso de una eventual infecci贸n de su agua, o mejorar los recursos utilizados para encontrar el foco de infecci贸n despu茅s de que se haya producido un brote.[ENG] Cooling towers are one of the most efficient systems for dissipating heat from power plants, water-cooled refrigeration, and air conditioning in buildings and industrial processes. Therefore, the behavior of these devices still deserves the attention of researchers and engineers. These systems are evaporative heat transfer devices in which atmospheric air cools warm water, with direct contact between the water and the air, by evaporating part of the water. Indirectly, the replacement of cooling towers by less efficient apparatus contributes to increasing energy consumption and thus to climate change. In this Doctoral Thesis a CFD numerical modeling for simulating the drift emitted by mechanical cooling towers located in built-up urban areas is presented. The averaged Navier-Stokes equations for the air motion are discretized through a finite volume method, with the k-_ model to simulate the turbulent flow. An appropriate set of boundary conditions is employed, in order to avoid the nonhomogeneity problem in the Atmospheric Boundary Layer (ABL). An Eulerian-Lagrangian model is used to simulate the air-water droplet motion, taking into account the effects of evaporation. The results are validated with experimental data of the deposition of droplets emitted by a pilot cooling tower, obtained through a technique based on water sensitive papers. Local meteorological data are measured through different equipment, mainly a meteorological tower adjacent to the cooling tower. To improve the results of the method, a segmented simulation is carried out. Each experimental case is subdivided into three cases, regarding wind direction. By doing this, it is possible to reproduce in a better way the wind direction fluctuations obtained during the experimental measurement. The result of the segmented simulation is a better correspondence between numerical and experimental data when high fluctuations of wind direction are measured. The influence of variables such as the ambient dry bulb temperature, the ambient specific humidity and the droplet exit temperature from cooling tower on the water droplet deposition and on the size of the affected area for mechanical cooling towers is obtained. Water droplet deposition decreases as evaporative processes increases (increasing dry bulb temperature, decreasing humidity). In addition, droplet wet bulb temperature has a direct influence in the evaporation of droplets, as evaporation is bigger when this parameter increases. The numerical procedure has proved useful for characterizing the dispersion and reach of water droplets from mechanical cooling towers in complex environments. Finally, the study is extended to a new urban environment in order to reproduce the explosive outbreak of legionellosis in the city of Murcia in 2001. The results of the characterization of the dispersion and reach of droplets from the cooling tower causative of the outbreak are compared with the results of the epidemiological investigation carried out by the Epidemiology Service to find the focus of the infection. The results of the modelization of the outbreak show that droplet dispersion patterns are in agreement with an explosive outbreak, as most of the drift emitted by the cooling tower reaches pedestrian areas and the size distribution of those droplets is big enough to contain the bacteria. In addition, the case-control study developed to find the source of the outbreak could have been reduced, taking into account only one of the methods of analysis of the exposition areas. As shown here, this modelization is useful to predict a cooling tower influence area, what will help to reduce environmental and personal impact in case of an eventual infection of its water, or, to improve the resources used to find the focus of infection after an outbreak has taken place.Escuela Internacional de Doctorado de la Universidad Polit茅cnica de CartagenaUniversidad Polit茅cnica de CartagenaPrograma Oficial de Doctorado en Tecnolog铆as Industriale