103 research outputs found
Computing Equilibria in Anonymous Games
We present efficient approximation algorithms for finding Nash equilibria in
anonymous games, that is, games in which the players utilities, though
different, do not differentiate between other players. Our results pertain to
such games with many players but few strategies. We show that any such game has
an approximate pure Nash equilibrium, computable in polynomial time, with
approximation O(s^2 L), where s is the number of strategies and L is the
Lipschitz constant of the utilities. Finally, we show that there is a PTAS for
finding an epsilo
Sparse Covers for Sums of Indicators
For all , we show that the set of Poisson Binomial
distributions on variables admits a proper -cover in total
variation distance of size ,
which can also be computed in polynomial time. We discuss the implications of
our construction for approximation algorithms and the computation of
approximate Nash equilibria in anonymous games.Comment: PTRF, to appea
Discretized Multinomial Distributions and Nash Equilibria in Anonymous Games
We show that there is a polynomial-time approximation scheme for computing
Nash equilibria in anonymous games with any fixed number of strategies (a very
broad and important class of games), extending the two-strategy result of
Daskalakis and Papadimitriou 2007. The approximation guarantee follows from a
probabilistic result of more general interest: The distribution of the sum of n
independent unit vectors with values ranging over {e1, e2, ...,ek}, where ei is
the unit vector along dimension i of the k-dimensional Euclidean space, can be
approximated by the distribution of the sum of another set of independent unit
vectors whose probabilities of obtaining each value are multiples of 1/z for
some integer z, and so that the variational distance of the two distributions
is at most eps, where eps is bounded by an inverse polynomial in z and a
function of k, but with no dependence on n. Our probabilistic result specifies
the construction of a surprisingly sparse eps-cover -- under the total
variation distance -- of the set of distributions of sums of independent unit
vectors, which is of interest on its own right.Comment: In the 49th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 200
Optimum Statistical Estimation with Strategic Data Sources
We propose an optimum mechanism for providing monetary incentives to the data
sources of a statistical estimator such as linear regression, so that high
quality data is provided at low cost, in the sense that the sum of payments and
estimation error is minimized. The mechanism applies to a broad range of
estimators, including linear and polynomial regression, kernel regression, and,
under some additional assumptions, ridge regression. It also generalizes to
several objectives, including minimizing estimation error subject to budget
constraints. Besides our concrete results for regression problems, we
contribute a mechanism design framework through which to design and analyze
statistical estimators whose examples are supplied by workers with cost for
labeling said examples
- …