103 research outputs found

    Computing Equilibria in Anonymous Games

    Full text link
    We present efficient approximation algorithms for finding Nash equilibria in anonymous games, that is, games in which the players utilities, though different, do not differentiate between other players. Our results pertain to such games with many players but few strategies. We show that any such game has an approximate pure Nash equilibrium, computable in polynomial time, with approximation O(s^2 L), where s is the number of strategies and L is the Lipschitz constant of the utilities. Finally, we show that there is a PTAS for finding an epsilo

    Sparse Covers for Sums of Indicators

    Get PDF
    For all n,ϵ>0n, \epsilon >0, we show that the set of Poisson Binomial distributions on nn variables admits a proper ϵ\epsilon-cover in total variation distance of size n2+n(1/ϵ)O(log2(1/ϵ))n^2+n \cdot (1/\epsilon)^{O(\log^2 (1/\epsilon))}, which can also be computed in polynomial time. We discuss the implications of our construction for approximation algorithms and the computation of approximate Nash equilibria in anonymous games.Comment: PTRF, to appea

    Discretized Multinomial Distributions and Nash Equilibria in Anonymous Games

    Full text link
    We show that there is a polynomial-time approximation scheme for computing Nash equilibria in anonymous games with any fixed number of strategies (a very broad and important class of games), extending the two-strategy result of Daskalakis and Papadimitriou 2007. The approximation guarantee follows from a probabilistic result of more general interest: The distribution of the sum of n independent unit vectors with values ranging over {e1, e2, ...,ek}, where ei is the unit vector along dimension i of the k-dimensional Euclidean space, can be approximated by the distribution of the sum of another set of independent unit vectors whose probabilities of obtaining each value are multiples of 1/z for some integer z, and so that the variational distance of the two distributions is at most eps, where eps is bounded by an inverse polynomial in z and a function of k, but with no dependence on n. Our probabilistic result specifies the construction of a surprisingly sparse eps-cover -- under the total variation distance -- of the set of distributions of sums of independent unit vectors, which is of interest on its own right.Comment: In the 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 200

    Optimum Statistical Estimation with Strategic Data Sources

    Full text link
    We propose an optimum mechanism for providing monetary incentives to the data sources of a statistical estimator such as linear regression, so that high quality data is provided at low cost, in the sense that the sum of payments and estimation error is minimized. The mechanism applies to a broad range of estimators, including linear and polynomial regression, kernel regression, and, under some additional assumptions, ridge regression. It also generalizes to several objectives, including minimizing estimation error subject to budget constraints. Besides our concrete results for regression problems, we contribute a mechanism design framework through which to design and analyze statistical estimators whose examples are supplied by workers with cost for labeling said examples
    corecore