6,992 research outputs found
Geodesic Flow on the Diffeomorphism Group of the circle
We show that certain right-invariant metrics endow the infinite-dimensional
Lie group of all smooth orientation-preserving diffeomorphisms of the circle
with a Riemannian structure. The study of the Riemannian exponential map allows
us to prove infinite-dimensional counterparts of results from classical
Riemannian geometry: the Riemannian exponential map is a smooth local
diffeomorphism and the length-minimizing property of the geodesics holds.Comment: 15 page
On periodic water waves with Coriolis effects and isobaric streamlines
In this paper we prove that solutions of the f-plane approximation for
equatorial geophysical deep water waves, which have the property that the
pressure is constant along the streamlines and do not possess stagnation
points,are Gerstner-type waves. Furthermore, for waves traveling over a flat
bed, we prove that there are only laminar flow solutions with these properties.Comment: To appear in Journal of Nonlinear Mathematical Physics; 15 page
Global well-posedness for the critical 2D dissipative quasi-geostrophic equation
We give an elementary proof of the global well-posedness for the critical 2D
dissipative quasi-geostrophic equation. The argument is based on a non-local
maximum principle involving appropriate moduli of continuity.Comment: 7 page
Particle trajectories in linearized irrotational shallow water flows
We investigate the particle trajectories in an irrotational shallow water
flow over a flat bed as periodic waves propagate on the water's free surface.
Within the linear water wave theory, we show that there are no closed orbits
for the water particles beneath the irrotational shallow water waves. Depending
on the strength of underlying uniform current, we obtain that some particle
trajectories are undulating path to the right or to the left, some are looping
curves with a drift to the right and others are parabolic curves or curves
which have only one loop
Steady water waves with multiple critical layers: interior dynamics
We study small-amplitude steady water waves with multiple critical layers.
Those are rotational two-dimensional gravity-waves propagating over a perfect
fluid of finite depth. It is found that arbitrarily many critical layers with
cat's-eye vortices are possible, with different structure at different levels
within the fluid. The corresponding vorticity depends linearly on the stream
function.Comment: 14 pages, 3 figures. As accepted for publication in J. Math. Fluid
Mec
On the Cauchy problem for a nonlinearly dispersive wave equation
We establish the local well-posedness for a new nonlinearly dispersive wave
equation and we show that the equation has solutions that exist for indefinite
times as well as solutions which blowup in finite times. Furthermore, we derive
an explosion criterion for the equation and we give a sharp estimate from below
for the existence time of solutions with smooth initial data.Comment: arxiv version is already officia
On the particle paths and the stagnation points in small-amplitude deep-water waves
In order to obtain quite precise information about the shape of the particle
paths below small-amplitude gravity waves travelling on irrotational deep
water, analytic solutions of the nonlinear differential equation system
describing the particle motion are provided. All these solutions are not closed
curves. Some particle trajectories are peakon-like, others can be expressed
with the aid of the Jacobi elliptic functions or with the aid of the
hyperelliptic functions. Remarks on the stagnation points of the
small-amplitude irrotational deep-water waves are also made.Comment: to appear in J. Math. Fluid Mech. arXiv admin note: text overlap with
arXiv:1106.382
Equations of the Camassa-Holm Hierarchy
The squared eigenfunctions of the spectral problem associated with the
Camassa-Holm (CH) equation represent a complete basis of functions, which helps
to describe the inverse scattering transform for the CH hierarchy as a
generalized Fourier transform (GFT). All the fundamental properties of the CH
equation, such as the integrals of motion, the description of the equations of
the whole hierarchy, and their Hamiltonian structures, can be naturally
expressed using the completeness relation and the recursion operator, whose
eigenfunctions are the squared solutions. Using the GFT, we explicitly describe
some members of the CH hierarchy, including integrable deformations for the CH
equation. We also show that solutions of some - dimensional members of
the CH hierarchy can be constructed using results for the inverse scattering
transform for the CH equation. We give an example of the peakon solution of one
such equation.Comment: 10 page
Variational derivation of the Camassa-Holm shallow water equation
We describe the physical hypothesis in which an approximate model of water
waves is obtained. For an irrotational unidirectional shallow water flow, we
derive the Camassa-Holm equation by a variational approach in the Lagrangian
formalism.Comment: 10 page
The Degasperis-Procesi equation as a non-metric Euler equation
In this paper we present a geometric interpretation of the periodic
Degasperis-Procesi equation as the geodesic flow of a right invariant symmetric
linear connection on the diffeomorphism group of the circle. We also show that
for any evolution in the family of -equations there is neither gain nor loss
of the spatial regularity of solutions. This in turn allows us to view the
Degasperis-Procesi and the Camassa-Holm equation as an ODE on the Fr\'echet
space of all smooth functions on the circle.Comment: 17 page
- …