224 research outputs found
First Searches for Optical Counterparts to Gravitational-Wave Candidate Events
During the Laser Interferometer Gravitational-wave Observatory and Virgo joint science runs in 2009-2010, gravitational wave (GW) data from three interferometer detectors were analyzed within minutes to select GW candidate events and infer their apparent sky positions. Target coordinates were transmitted to several telescopes for follow-up observations aimed at the detection of an associated optical transient. Images were obtained for eight such GW candidates. We present the methods used to analyze the image data as well as the transient search results. No optical transient was identified with a convincing association with any of these candidates, and none of the GW triggers showed strong evidence for being astrophysical in nature. We compare the sensitivities of these observations to several model light curves from possible sources of interest, and discuss prospects for future joint GW-optical observations of this type
A search of the Orion spur for continuous gravitational waves using a "loosely coherent" algorithm on data from LIGO interferometers
We report results of a wideband search for periodic gravitational waves from
isolated neutron stars within the Orion spur towards both the inner and outer
regions of our Galaxy. As gravitational waves interact very weakly with matter,
the search is unimpeded by dust and concentrations of stars. One search disk
(A) is in diameter and centered on
, and the other
(B) is in diameter and centered on
. We explored the
frequency range of 50-1500 Hz and frequency derivative from to Hz/s. A multi-stage, loosely coherent search program allowed probing
more deeply than before in these two regions, while increasing coherence length
with every stage.
Rigorous followup parameters have winnowed initial coincidence set to only 70
candidates, to be examined manually. None of those 70 candidates proved to be
consistent with an isolated gravitational wave emitter, and 95% confidence
level upper limits were placed on continuous-wave strain amplitudes. Near
Hz we achieve our lowest 95% CL upper limit on worst-case linearly polarized
strain amplitude of , while at the high end of our
frequency range we achieve a worst-case upper limit of for
all polarizations and sky locations.Comment: Fixed minor typo - duplicate name in the author lis
Supplement: "Localization and broadband follow-up of the gravitational-wave transient GW150914" (2016, ApJL, 826, L13)
This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands
First measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo BinaryâBlack-hole Merger GW170814
International audienceWe present a multi-messenger measurement of the Hubble constant H 0 using the binaryâblack-hole merger GW170814 as a standard siren, combined with a photometric redshift catalog from the Dark Energy Survey (DES). The luminosity distance is obtained from the gravitational wave signal detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO)/Virgo Collaboration (LVC) on 2017 August 14, and the redshift information is provided by the DES Year 3 data. Black hole mergers such as GW170814 are expected to lack bright electromagnetic emission to uniquely identify their host galaxies and build an object-by-object Hubble diagram. However, they are suitable for a statistical measurement, provided that a galaxy catalog of adequate depth and redshift completion is available. Here we present the first Hubble parameter measurement using a black hole merger. Our analysis results in , which is consistent with both SN Ia and cosmic microwave background measurements of the Hubble constant. The quoted 68% credible region comprises 60% of the uniform prior range [20, 140] km sâ1 Mpcâ1, and it depends on the assumed prior range. If we take a broader prior of [10, 220] km sâ1 Mpcâ1, we find (57% of the prior range). Although a weak constraint on the Hubble constant from a single event is expected using the dark siren method, a multifold increase in the LVC event rate is anticipated in the coming years and combinations of many sirens will lead to improved constraints on H 0
Search for post-merger gravitational waves from the remnant of the binary neutron star merger GW170817
In Advanced LIGO, detection and astrophysical source parameter estimation of the binary black hole merger GW150914 requires a calibrated estimate of the gravitational-wave strain sensed by the detectors. Producing an estimate from each detector's differential arm length control loop readout signals requires applying time domain filters, which are designed from a frequency domain model of the detector's gravitational-wave response. The gravitational-wave response model is determined by the detector's opto-mechanical response and the properties of its feedback control system. The measurements used to validate the model and characterize its uncertainty are derived primarily from a dedicated photon radiation pressure actuator, with cross-checks provided by optical and radio frequency references. We describe how the gravitational-wave readout signal is calibrated into equivalent gravitational-wave-induced strain and how the statistical uncertainties and systematic errors are assessed. Detector data collected over 38 calendar days, from September 12 to October 20, 2015, contain the event GW150914 and approximately 16 of coincident data used to estimate the event false alarm probability. The calibration uncertainty is less than 10% in magnitude and 10 degrees in phase across the relevant frequency band 20 Hz to 1 kHz
Searches for continuous gravitational waves from nine young supernova remnants
We describe directed searches for continuous gravitational waves in data from
the sixth LIGO science data run. The targets were nine young supernova remnants
not associated with pulsars; eight of the remnants are associated with
non-pulsing suspected neutron stars. One target's parameters are uncertain
enough to warrant two searches, for a total of ten. Each search covered a broad
band of frequencies and first and second frequency derivatives for a fixed sky
direction. The searches coherently integrated data from the two LIGO
interferometers over time spans from 5.3-25.3 days using the matched-filtering
F-statistic. We found no credible gravitational-wave signals. We set 95%
confidence upper limits as strong (low) as on intrinsic
strain, on fiducial ellipticity, and on
r-mode amplitude. These beat the indirect limits from energy conservation and
are within the range of theoretical predictions for neutron-star ellipticities
and r-mode amplitudes.Comment: Science summary available at
http://www.ligo.org/science/Publication-S6DirectedSNR/index.ph
Erratum: âSearches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015â2017 LIGO Dataâ (2019, ApJ, 879, 10)
Due to an error at the publisher, in the published article the number of pulsars presented in the paper is incorrect in multiple places throughout the text. Specifically, "222" pulsars should be "221." Additionally, the number of pulsars for which we have EM observations that fully overlap with O1 and O2 changes from "168" to "167." Elsewhere, in the machine-readable table of Table 1 and in Table 2, the row corresponding to pulsar J0952-0607 should be excised as well. Finally, in the caption for Table 2 the number of pulsars changes from "188" to "187.
GW190412: Observation of a Binary-Black-Hole Coalescence with Asymmetric Masses
We report the observation of gravitational waves from a binary-black-hole coalescence during the first two weeks of LIGOâs and Virgoâs third observing run. The signal was recorded on April 12, 2019 at 05â¶30â¶44 UTC with a network signal-to-noise ratio of 19. The binary is different from observations during the first two observing runs most notably due to its asymmetric masses: a âŒ30âM_â black hole merged with a âŒ8âM_â black hole companion. The more massive black hole rotated with a dimensionless spin magnitude between 0.22 and 0.60 (90% probability). Asymmetric systems are predicted to emit gravitational waves with stronger contributions from higher multipoles, and indeed we find strong evidence for gravitational radiation beyond the leading quadrupolar order in the observed signal. A suite of tests performed on GW190412 indicates consistency with Einsteinâs general theory of relativity. While the mass ratio of this system differs from all previous detections, we show that it is consistent with the population model of stellar binary black holes inferred from the first two observing runs
Searches for gravitational waves from known pulsars at two harmonics in 2015-2017 LIGO data
International audienceWe present a search for gravitational waves from 222 pulsars with rotation frequencies âł10 Hz. We use advanced LIGO data from its first and second observing runs spanning 2015â2017, which provides the highest-sensitivity gravitational-wave data so far obtained. In this search we target emission from both the l = m = 2 mass quadrupole mode, with a frequency at twice that of the pulsarâs rotation, and the l = 2, m = 1 mode, with a frequency at the pulsar rotation frequency. The search finds no evidence for gravitational-wave emission from any pulsar at either frequency. For the l = m = 2 mode search, we provide updated upper limits on the gravitational-wave amplitude, mass quadrupole moment, and fiducial ellipticity for 167 pulsars, and the first such limits for a further 55. For 20 young pulsars these results give limits that are below those inferred from the pulsarsâ spin-down. For the Crab and Vela pulsars our results constrain gravitational-wave emission to account for less than 0.017% and 0.18% of the spin-down luminosity, respectively. For the recycled millisecond pulsar J0711â6830 our limits are only a factor of 1.3 above the spin-down limit, assuming the canonical value of 1038 kg m2 for the starâs moment of inertia, and imply a gravitational-wave-derived upper limit on the starâs ellipticity of 1.2 Ă 10â8. We also place new limits on the emission amplitude at the rotation frequency of the pulsars
- âŠ