9 research outputs found

    Epiblast-specific loss of HCF-1 leads to failure in anterior-posterior axis specification.

    Get PDF
    Mammalian Host-Cell Factor 1 (HCF-1), a transcriptional co-regulator, plays important roles during the cell-division cycle in cell culture, embryogenesis as well as adult tissue. In mice, HCF-1 is encoded by the X-chromosome-linked Hcfc1 gene. Induced Hcfc1(cKO/+) heterozygosity with a conditional knockout (cKO) allele in the epiblast of female embryos leads to a mixture of HCF-1-positive and -deficient cells owing to random X-chromosome inactivation. These embryos survive owing to the replacement of all HCF-1-deficient cells by HCF-1-positive cells during E5.5 to E8.5 of development. In contrast, complete epiblast-specific loss of HCF-1 in male embryos, Hcfc1(epiKO/Y), leads to embryonic lethality. Here, we characterize this lethality. We show that male epiblast-specific loss of Hcfc1 leads to a developmental arrest at E6.5 with a rapid progressive cell-cycle exit and an associated failure of anterior visceral endoderm migration and primitive streak formation. Subsequently, gastrulation does not take place. We note that the pattern of Hcfc1(epiKO/Y) lethality displays many similarities to loss of β-catenin function. These results reveal essential new roles for HCF-1 in early embryonic cell proliferation and development

    Urine Fetuin-A is a biomarker of autosomal dominant polycystic kidney disease progression.

    Get PDF
    BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disorder characterized by numerous fluid-filled cysts that frequently result in end-stage renal disease. While promising treatment options are in advanced clinical development, early diagnosis and follow-up remain a major challenge. We therefore evaluated the diagnostic value of Fetuin-A as a new biomarker of ADPKD in human urine. RESULTS: We found that renal Fetuin-A levels are upregulated in both Pkd1 and Bicc1 mouse models of ADPKD. Measurement by ELISA revealed that urinary Fetuin-A levels were significantly higher in 66 ADPKD patients (17.5 ± 12.5 μg/mmol creatinine) compared to 17 healthy volunteers (8.5 ± 3.8 μg/mmol creatinine) or 50 control patients with renal diseases of other causes (6.2 ± 2.9 μg/mmol creatinine). Receiver operating characteristics (ROC) analysis of urinary Fetuin-A levels for ADPKD rendered an optimum cut-off value of 12.2 μg/mmol creatinine, corresponding to 94% of sensitivity and 60% of specificity (area under the curve 0.74 ; p = 0.0019). Furthermore, urinary Fetuin-A levels in ADPKD patients correlated with the degree of renal insufficiency and showed a significant increase in patients with preserved renal function followed for two years. CONCLUSIONS: Our findings establish urinary Fetuin-A as a sensitive biomarker of the progression of ADPKD. Further studies are required to examine the pathogenic mechanisms of elevated renal and urinary Fetuin-A in ADPKD

    Bicc1 links the regulation of cAMP signaling in polycystic kidneys to microRNA-induced gene silencing.

    No full text
    Genetic defects in autosomal-dominant polycystic kidney disease (ADPKD) promote cystic growth of renal tubules, at least in part by stimulating the accumulation of cAMP. How renal cAMP levels are regulated is incompletely understood. We show that cAMP and the expression of its synthetic enzyme adenylate cyclase-6 (AC6) are up-regulated in cystic kidneys of Bicc1(-)(/-) knockout mice. Bicc1, a protein comprising three K homology (KH) domains and a sterile alpha motif (SAM), is expressed in proximal tubules. The KH domains independently bind AC6 mRNA and recruit the miR-125a from Dicer, whereas the SAM domain enables silencing by Argonaute and TNRC6A/GW182. Bicc1 similarly induces silencing of the protein kinase inhibitor PKIα by miR-27a. Thus, Bicc1 is needed on these target mRNAs for silencing by specific miRNAs. The repression of AC6 by Bicc1 might explain why cysts in ADPKD patients preferentially arise from distal tubules

    A novel cell-based sensor detecting the activity of individual basic proprotein convertases.

    No full text
    The basic proprotein convertases (PCs) furin, PC1/3, PC2, PC5/6, PACE4, PC4, and PC7 are promising drug targets for human diseases. However, developing selective inhibitors remains challenging due to overlapping substrate recognition motifs and limited structural information. Classical drug screening approaches for basic PC inhibitors involve homogeneous biochemical assays using soluble recombinant enzymes combined with fluorogenic substrate peptides that may not accurately recapitulate the complex cellular context of the basic PC-substrate interaction. Herein we report basic PC sensor (BPCS), a novel cell-based molecular sensor that allows rapid screening of candidate inhibitors and their selectivity toward individual basic PCs within mammalian cells. BPCS consists of Gaussia luciferase linked to a sortilin-1 membrane anchor via a cleavage motif that allows efficient release of luciferase specifically if individual basic PCs are provided in the same membrane. Screening of selected candidate peptidomimetic inhibitors revealed that BPCS can readily distinguish between general and selective PC inhibitors in a high-throughput screening format. The robust and cost-effective assay format of BPCS makes it suitable to identify novel specific small-molecule inhibitors against basic PCs for therapeutic application. Its cell-based nature will allow screening for drug targets in addition to the catalytically active mature enzyme, including maturation, transport, and cellular factors that modulate the enzyme's activity. This broadened 'target range' will enhance the likelihood to identify novel small-molecule compounds that inhibit basic PCs in a direct or indirect manner and represents a conceptual advantage

    Inhibition of anti-tumor immunity by melanoma cell-derived Activin-A depends on STING.

    No full text
    The transforming growth factor-β (TGF-β) family member activin A (hereafter Activin-A) is overexpressed in many cancer types, often correlating with cancer-associated cachexia and poor prognosis. Activin-A secretion by melanoma cells indirectly impedes CD8 <sup>+</sup> T cell-mediated anti-tumor immunity and promotes resistance to immunotherapies, even though Activin-A can be proinflammatory in other contexts. To identify underlying mechanisms, we here analyzed the effect of Activin-A on syngeneic grafts of Braf mutant YUMM3.3 mouse melanoma cells and on their microenvironment using single-cell RNA sequencing. We found that the Activin-A-induced immune evasion was accompanied by a proinflammatory interferon signature across multiple cell types, and that the associated increase in tumor growth depended at least in part on pernicious STING activity within the melanoma cells. Besides corroborating a role for proinflammatory signals in facilitating immune evasion, our results suggest that STING holds considerable potential as a therapeutic target to mitigate tumor-promoting Activin-A signaling at least in melanoma

    Targeting Nodal and Cripto-1: Perspectives Inside Dual Potential Theranostic Cancer Biomarkers

    No full text
    corecore