1,417 research outputs found
Shine bright or live long: substituent effects in [Cu(N^N)(P^P)]+-based light-emitting electrochemical cells where N^N is a 6-substituted 2,2'-bipyridine
We report [Cu(P^P)(N^N)][PF6] complexes with P^P = bis(2-(diphenylphosphino)phenyl)ether (POP) or 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (xantphos) and N^N = 6-methyl-2,2′-bipyridine (Mebpy), 6-ethyl-2,2′-bipyridine (Etbpy), 6,6′-dimethyl-2,2′-bipyridine (Me2bpy) or 6-phenyl-2,2′-bipyridine (Phbpy). The crystal structures of [Cu(POP)(Phbpy)][PF6]·Et2O, [Cu(POP)(Etbpy)][PF6]·Et2O, [Cu(xantphos)(Me2bpy)][PF6], [Cu(xantphos)(Mebpy)][PF6]·CH2Cl2·0.4Et2O, [Cu(xantphos)(Etbpy)][PF6]·CH2Cl2·1.5H2O and [Cu(xantphos)(Phbpy)][PF6] are described; each copper(I) centre is distorted tetrahedral. In the crystallographically determined structures, the N^N domain in [Cu(xantphos)(Phbpy)]+ and [Cu(POP)(Phbpy)]+ is rotated ∼180° with respect to its orientation in [Cu(xantphos)(Mebpy)]+, [Cu(POP)(Etbpy)]+ and [Cu(xantphos)(Etbpy)]+; in each complex containing xantphos, the xanthene ‘bowl’ retains the same conformation in the solid-state structures. The two conformers resulting from the 180° rotation of the N^N ligand were optimized at the B3LYP-D3/(6-31G**+LANL2DZ) level and are close in energy for each complex. Variable temperature NMR spectroscopy evidences the presence of two conformers of [Cu(xantphos)(Phbpy)]+ in solution which are related by inversion of the xanthene unit. The complexes exhibit MLCT absorption bands in the range 378 to 388 nm, and excitation into each MLCT band leads to yellow emissions. Photoluminescence quantum yields (PLQYs) increase from solution to thin-film and powder; the highest PLQYs are observed for powdered [Cu(xantphos)(Mebpy)][PF6] (34%), [Cu(xantphos)(Etbpy)][PF6] (37%) and [Cu(xantphos)(Me2bpy)][PF6] (37%) with lifetimes of 9.6–11 μs. Density functional theory calculations predict that the emitting triplet (T1) involves an electron transfer from the Cu–P^P environment to the N^N ligand and therefore shows a 3MLCT character. T1 is calculated to be ∼0.20 eV lower in energy than the first singlet excited state (S1). The [Cu(P^P)(N^N)][PF6] ionic transition-metal (iTMC) complexes were tested in light-emitting electrochemical cells (LECs). Turn-on times are fast, and the LEC with [Cu(xantphos)(Me2bpy)][PF6] achieves a maximum efficacy of 3.0 cd A−1 (luminance = 145 cd m−2) with a lifetime of 1 h; on going to the [Cu(xantphos)(Mebpy)][PF6]-based LEC, the lifetime exceeds 15 h but at the expense of the efficacy (1.9 cd A−1). The lifetimes of LECs containing [Cu(xantphos)(Etbpy)][PF6] and [Cu(POP)(Etbpy)][PF6] exceed 40 and 80 h respectively
Conformal boundary and geodesics for and the plane wave: Their approach in the Penrose limit
Projecting on a suitable subset of coordinates, a picture is constructed in
which the conformal boundary of and that of the plane wave
resulting in the Penrose limit are located at the same line. In a second line
of arguments all and plane wave geodesics are constructed in
their integrated form. Performing the Penrose limit, the approach of null
geodesics reaching the conformal boundary of to that of the
plane wave is studied in detail. At each point these null geodesics of
form a cone which degenerates in the limit.Comment: some statements refined, chapter 5 rewritten to make it more precise,
some typos correcte
A uniqueness theorem for the adS soliton
The stability of physical systems depends on the existence of a state of
least energy. In gravity, this is guaranteed by the positive energy theorem.
For topological reasons this fails for nonsupersymmetric Kaluza-Klein
compactifications, which can decay to arbitrarily negative energy. For related
reasons, this also fails for the AdS soliton, a globally static, asymptotically
toroidal spacetime with negative mass. Nonetheless, arguing from
the AdS/CFT correspondence, Horowitz and Myers (hep-th/9808079) proposed a new
positive energy conjecture, which asserts that the AdS soliton is the unique
state of least energy in its asymptotic class. We give a new structure theorem
for static spacetimes and use it to prove uniqueness of the AdS
soliton. Our results offer significant support for the new positive energy
conjecture and add to the body of rigorous results inspired by the AdS/CFT
correspondence.Comment: Revtex, 4 pages; Matches published version. More detail in Abstract
and one equation corrected. For details of proofs and further results, see
hep-th/020408
Redox cycling of iridium(III) complexes gives versatile materials for photonics applications
The cyclometallated iridium(III) complex [Me4N][Ir(ppy)2(cat)] (Hppy = 2-phenylpyridine; H2cat = benzene-1,2-diol) has been prepared under inert atmosphere and has been structurally characterized by single crystal X-ray diffraction. Under ambient conditions, the fully reduced complex (as formulated) undergoes rapid one-electron oxidation both in solution and in the solid state to a species containing a semiquinone ligand. The resultant neutral complex [Ir(ppy)2(sq)] (sq = o-semiquinone) was also prepared by exposing the reaction mixture to O2 during the course of the reaction. Electron paramagnetic resonance (EPR) spectroscopy confirms the diamagnetic nature of the complex [Me4N][Ir(ppy)2(cat)] and indicates that the unpaired electron in [Ir(ppy)2(sq)] resides primarily on the sq ligand. The photophysical, electrochemical, and spectroelectrochemical properties of [Ir(ppy)2(sq)] were investigated and reveal the changes in absorption as the complex is converted into the catecholate and quinone forms
Beta-functions in Yang-Mills Theory from Non-critical String
The renormalization group equations of the Yang-Mills theory are examined in
the non-critical string theory according to the framework of the holography.
Under a simple ansatz for the tachyon, we could find several interesting
solutions which are classified by the value of the tachyon potential at the
vacuum. We show two typical, asymptotic-free solutions which are different in
their infrared behaviors. For both types of solutions, we could obtain
quark-confinement potential from the Wilson-loop. The stability of the tachyon
and the ZigZag symmetry are also discussed for these solutions.Comment: 16 pages, 5 figure
Porphyrin-polymer nanocompartments: singlet oxygen generation and antimicrobial activity
A new water-soluble photocatalyst for singlet oxygen generation is presented. Its absorption extends to the red part of the spectrum, showing activity up to irradiation at 660 nm. Its efficiency has been compared to that of a commercial analogue (Rose Bengal) for the oxidation of L-methionine. The quantitative and selective oxidation was promising enough to encapsulate the photocatalyst in polymersomes. The singlet oxygen generated in this way can diffuse and remain active for the oxidation of L-methionine outside the polymeric compartment. These results made us consider the use of these polymersomes for antimicrobial applications. E. Coli colonies were subjected to oxidative stress using the photocatalyst-polymersome conjugates and nearly all the colonies were damaged upon extensive irradiation while under the same red LED light irradiation, liquid cultures in the absence of porphyrin or porphyrin-loaded polymersomes were unharme
Yang-Mills theory from non-critical string
The correspondence of the non-critical string theory and the Yang-Mills
theory is examined according to the recent Polyakov's proposal, and two
possible solutions of the bulk equations are addressed near the fixed points of
the pure Yang-Mills theory: (i) One solution asymptotically approaches to the
AdS space at the ultraviolet limit where the conformally invariant field theory
is realized. (ii) The second one approaches to the flat space in both the
infrared and the ultraviolet limits. The area law of the Wilson-loop and the
asymptotic freedom with logarithmic behaviour are seen in the respective limit.Comment: 17 pages, no figure, Late
- …