11 research outputs found
Improved recovery of urinary small extracellular vesicles by differential ultracentrifugation
Extracellular vesicles (EVs) are lipid-membrane enclosed structures that are associated with several diseases, including those of genitourinary tract. Urine contains EVs derived from urinary tract cells. Owing to its non-invasive collection, urine represents a promising source of biomarkers for genitourinary disorders, including cancer. The most used method for urinary EVs separation is differential ultracentrifugation (UC), but current protocols lead to a significant loss of EVs hampering its efficiency. Moreover, UC protocols are labor-intensive, further limiting clinical application. Herein, we sought to optimize an UC protocol, reducing the time spent and improving small EVs (SEVs) yield. By testing different ultracentrifugation times at 200,000g to pellet SEVs, we found that 48 min and 60 min enabled increased SEVs recovery compared to 25 min. A step for pelleting large EVs (LEVs) was also evaluated and compared with filtering of the urine supernatant. We found that urine supernatant filtering resulted in a 1.7-fold increase on SEVs recovery, whereas washing steps resulted in a 0.5 fold-decrease on SEVs yield. Globally, the optimized UC protocol was shown to be more time efficient, recovering higher numbers of SEVs than Exoquick-TC (EXO). Furthermore, the optimized UC protocol preserved RNA quality and quantity, while reducing SEVs separation time.</p
Improved recovery of urinary small extracellular vesicles by differential ultracentrifugation
Extracellular vesicles (EVs) are lipid-membrane enclosed structures that are associated with several diseases, including those of genitourinary tract. Urine contains EVs derived from urinary tract cells. Owing to its non-invasive collection, urine represents a promising source of biomarkers for genitourinary disorders, including cancer. The most used method for urinary EVs separation is differential ultracentrifugation (UC), but current protocols lead to a significant loss of EVs hampering its efficiency. Moreover, UC protocols are labor-intensive, further limiting clinical application. Herein, we sought to optimize an UC protocol, reducing the time spent and improving small EVs (SEVs) yield. By testing different ultracentrifugation times at 200,000g to pellet SEVs, we found that 48 min and 60 min enabled increased SEVs recovery compared to 25 min. A step for pelleting large EVs (LEVs) was also evaluated and compared with filtering of the urine supernatant. We found that urine supernatant filtering resulted in a 1.7-fold increase on SEVs recovery, whereas washing steps resulted in a 0.5 fold-decrease on SEVs yield. Globally, the optimized UC protocol was shown to be more time efficient, recovering higher numbers of SEVs than Exoquick-TC (EXO). Furthermore, the optimized UC protocol preserved RNA quality and quantity, while reducing SEVs separation time.</p
DNA Methylation-Based Testing in Liquid Biopsies as Detection and Prognostic Biomarkers for the Four Major Cancer Types
Lung, breast, colorectal, and prostate cancers are the most incident worldwide. Optimal population-based cancer screening methods remain an unmet need, since cancer detection at early stages increases the prospects of successful and curative treatment, leading to a lower incidence of recurrences. Moreover, the current parameters for cancer patients’ stratification have been associated with divergent outcomes. Therefore, new biomarkers that could aid in cancer detection and prognosis, preferably detected by minimally invasive methods are of major importance. Aberrant DNA methylation is an early event in cancer development and may be detected in circulating cell-free DNA (ccfDNA), constituting a valuable cancer biomarker. Furthermore, DNA methylation is a stable alteration that can be easily and rapidly quantified by methylation-specific PCR methods. Thus, the main goal of this review is to provide an overview of the most important studies that report methylation biomarkers for the detection and prognosis of the four major cancers after a critical analysis of the available literature. DNA methylation-based biomarkers show promise for cancer detection and management, with some studies describing a “PanCancer” detection approach for the simultaneous detection of several cancer types. Nonetheless, DNA methylation biomarkers still lack large-scale validation, precluding implementation in clinical practice
PROSTAGLANDIN E <inf>2</inf> stimulates cancer-related phenotypes in prostate cancer PC3 cells through cyclooxygenase-2
Cyclooxygenase (COX)-derived prostaglandin E2 (PGE 2 ) affects many mechanisms that have been shown to play roles in carcinogenesis. Recently, we found that, in androgen-independent prostate cancer PC3 cells, PGE 2 acts through an intracrine mechanism by which its uptake by the prostaglandin transporter (PGT) results in increased intracellular PGE 2 (iPGE 2 ), leading to enhanced cell proliferation, migration, invasion, angiogenesis, and loss of cell adhesion to collagen I. These iPGE 2 -mediated effects were dependent on hypoxia-inducible factor 1-α (HIF-1α), whose expression increased upon epidermal growth factor receptor (EGFR) transactivation by a subset of intracellular PGE 2 receptors. Here, we aimed to study the role of COX in PGE 2 protumoral effects in PC3 cells and found that the effects were prevented by inhibition of COX-2, which highlights its crucial role amplifying the levels of iPGE 2 . Treatment with exogenous PGE 2 determined a transcriptional increase in COX-2 expression, which was abolished by genetic or pharmacologic inhibition of PGT. PGE 2 -induced increase in COX-2 expression and, thereby, in transcriptional increase in HIF-1α expression was due to EGFR activation, leading to the activation of Phosphoinositide 3-kinase/Akt, Extracellular signal -regulated kinases 1/2, p38 and Mitogen- and stress-activated protein kinase-1 (PI3K/Akt, Erk1/2, p38 and MSK-1). Collectively, the data suggest that EGFR-dependent COX-2 upregulation by a novel positive feedback loop triggered by iPGE 2 underlies the intracrine pro-tumoral effects of PGE 2 in PC3 cells. Therefore, this feedback loop may be relevant in prostate cancer for the maintenance of PGE 2 -dependent cancer cell growth through amplifying the activity of the COX-2 pathwayThis study was supported by grant SAF2011‐26838 from the Spanish Ministerio de Ciencia e Innovació
LiKidMiRs: A ddPCR-Based Panel of 4 Circulating miRNAs for Detection of Renal Cell Carcinoma
Background: Decreased renal cell cancer-related mortality is an important societal goal, embodied by efforts to develop effective biomarkers enabling early detection and increasing the likelihood of curative treatment. Herein, we sought to develop a new biomarker for early and minimally invasive detection of renal cell carcinoma (RCC) based on a microRNA panel assessed by ddPCR. Methods: Plasma samples from patients with RCC (n = 124) or oncocytomas (n = 15), and 64 healthy donors, were selected. Hsa-miR-21-5p, hsa-miR-126-3p, hsa-miR-155-5p and hsa-miR-200b-3p levels were evaluated using a ddPCR protocol. Results: RCC patients disclosed significantly higher circulating levels of hsa-miR-155-5p compared to healthy donors, whereas the opposite was observed for hsa-miR-21-5p levels. Furthermore, hsa-miR-21-5p and hsa-miR-155-5p panels detected RCC with high sensitivity (82.66%) and accuracy (71.89%). The hsa-miR-126-3p/hsa-miR-200b-3p panel identified the most common RCC subtype (clear cell, ccRCC) with 74.78% sensitivity. Conclusion: Variable combinations of plasma miR levels assessed by ddPCR enable accurate detection of RCC in general, and of ccRCC. These findings, if confirmed in larger studies, provide evidence for a novel ancillary tool which might aid in early detection of RCC
Comparing diagnostic and prognostic performance of two-gene promoter methylation panels in tissue biopsies and urines of prostate cancer patients
Abstract Background Prostate cancer (PCa) is one of the most common cancers among men worldwide. Current screening methods for PCa display limited sensitivity and specificity, not stratifying for disease aggressiveness. Hence, development and validation of new molecular markers is needed. Aberrant gene promoter methylation is common in PCa and has shown promise as clinical biomarker. Herein, we assessed and compared the diagnostic and prognostic performance of two-gene panel promoter methylation in the same sample sets. Methods Promoter methylation of panel #1 (singleplex-miR-34b/c and miR-193b) and panel #2 (multiplex-APC, GSTP1, and RARβ2) was evaluated using MethyLight methodology in two different cohorts [prostate biopsy (#1) and urine sediment (#2)]. Biomarkers’ diagnostic (validity estimates) and prognostic (disease-specific survival, disease-free survival, and progression-free survival) performance was assessed. Results Promoter methylation levels of both panels showed the highest levels in PCa samples in both cohorts. In tissue samples, methylation panel #1 and panel #2 detected PCa with AUC of 0.9775 and 1.0, respectively, whereas in urine samples, panel #2 demonstrated superior performance although a combination of miR-34b/c, miR-193b, APC, and RARβ2 disclosed the best results (AUC = 0.9817). Furthermore, higher mir-34b/c and panel #2 methylation independently predicted for shorter DSS. Furthermore, time-dependent ROC curves showed that both miR-34b/c and GSTP1 methylation levels identify with impressive performance patients that relapse up to 15 years after diagnosis (AUC = 0.751 and AUC = 0.765, respectively). Conclusions We concluded that quantitative gene panel promoter methylation might be a clinically useful tool for PCa non-invasive detection and risk stratification for disease aggressiveness in both tissue biopsies and urines
Circulating miR-99a-5p Expression in Plasma: A Potential Biomarker for Early Diagnosis of Breast Cancer
MicroRNAs have emerged as new diagnostic and therapeutic biomarkers for breast cancer. Herein, we analysed miR-99a-5p expression levels in primary tumours and plasma of breast cancer patients to evaluate its usefulness as a minimally invasive diagnostic biomarker. MiR-99a-5p expression levels were determined by quantitative real-time PCR in three independent cohorts of patients: (I) Discovery cohort: breast cancer tissues (n = 103) and healthy breast tissues (n = 26); (II) Testing cohort: plasma samples from 105 patients and 98 healthy donors; (III) Validation cohort: plasma samples from 89 patients and 85 healthy donors. Our results demonstrated that miR-99a-5p was significantly downregulated in breast cancer tissues compared to healthy breast tissues. Conversely, miR-99a-5p levels were significantly higher in breast cancer patients than in healthy controls in plasma samples from both testing and validation cohorts, and ROC curve analysis revealed that miR-99a-5p has good diagnostic potential even to detect early breast cancer. In conclusion, miR-99a-5p’s deregulated expression distinguished healthy patients from breast cancer patients in two different types of samples (tissues and plasma). Interestingly, expression levels in plasma were significantly lower in healthy controls than in early-stage breast cancer patients. Our findings suggest circulating miR-99a-5p as a novel promising non-invasive biomarker for breast cancer detection
Circulating miR-99a-5p Expression in Plasma : A Potential Biomarker for Early Diagnosis of Breast Cancer
MicroRNAs have emerged as new diagnostic and therapeutic biomarkers for breast cancer. Herein, we analysed miR-99a-5p expression levels in primary tumours and plasma of breast cancer patients to evaluate its usefulness as a minimally invasive diagnostic biomarker. MiR-99a-5p expression levels were determined by quantitative real-time PCR in three independent cohorts of patients: (I) Discovery cohort: breast cancer tissues (n = 103) and healthy breast tissues (n = 26); (II) Testing cohort: plasma samples from 105 patients and 98 healthy donors; (III) Validation cohort: plasma samples from 89 patients and 85 healthy donors. Our results demonstrated that miR-99a-5p was significantly downregulated in breast cancer tissues compared to healthy breast tissues. Conversely, miR-99a-5p levels were significantly higher in breast cancer patients than in healthy controls in plasma samples from both testing and validation cohorts, and ROC curve analysis revealed that miR-99a-5p has good diagnostic potential even to detect early breast cancer. In conclusion, miR-99a-5p's deregulated expression distinguished healthy patients from breast cancer patients in two di erent types of samples (tissues and plasma). Interestingly, expression levels in plasma were significantly lower in healthy controls than in early-stage breast cancer patients. Our findings suggest circulating miR-99a-5p as a novel promising non-invasive biomarker for breast cancer detection