6 research outputs found
Recommended from our members
Extent of investigation and management of cases of 'unexplained' mismatch repair deficiency (u-dMMR): a UK Cancer Genetics Group consensus.
Peer reviewed: TrueAcknowledgements: The authors thank the attendees of the national multidisciplinary team meeting. The authors also wish to thank any of those participants at the national consensus meeting who logged into the meeting anonymously or with a colleague and therefore could not be explicitly listed as a collaborator.BACKGROUND: Mismatch repair deficiency (dMMR) is a characteristic feature of cancers linked to Lynch syndrome. However, in most cases, it results from sporadic somatic events rather than hereditary factors. The term 'Lynch-like syndrome' (LLS) has been used to guide colorectal cancer surveillance for relatives of individuals with a dMMR tumour when somatic and germline genomic testing is uninformative. As the assessment of mismatch repair through immunohistochemistry and/or microsatellite instability is increasingly applied across various tumour types for treatment planning, dMMR is increasingly detected in tumours where suspicion of hereditary aetiology is low. Our objective was to establish current practices and develop national guidance for investigating, and managing relatives of, patients with cancers demonstrating unexplained dMMR. METHODS: This was achieved through a virtual consensus meeting involving key stakeholders from the UK, through premeeting surveys, structured discussions and in-meeting polling to formulate best practice guidance. RESULTS: We identified variability in the availability of diagnostic technologies across specialist centres. It was agreed that equitable access to baseline testing is required, acknowledging the need for a pragmatic approach to investigating dMMR cancers not traditionally associated with Lynch syndrome. Factors such as family history, age, tumour type, protein loss pattern and extent of the investigation were deemed crucial in guiding family management. The term 'unexplained dMMR' was recommended over LLS. CONCLUSION: Decisions regarding investigations and future cancer risk management in patients and relatives should be nuanced, considering factors like clinical suspicion of hereditary predisposition to allocate limited resources efficiently and avoid unnecessary investigations in low-suspicion families
Recommended from our members
Extent of investigation and management of cases of 'unexplained' mismatch repair deficiency (u-dMMR): a UK Cancer Genetics Group consensus.
Peer reviewed: TrueAcknowledgements: The authors thank the attendees of the national multidisciplinary team meeting. The authors also wish to thank any of those participants at the national consensus meeting who logged into the meeting anonymously or with a colleague and therefore could not be explicitly listed as a collaborator.BACKGROUND: Mismatch repair deficiency (dMMR) is a characteristic feature of cancers linked to Lynch syndrome. However, in most cases, it results from sporadic somatic events rather than hereditary factors. The term 'Lynch-like syndrome' (LLS) has been used to guide colorectal cancer surveillance for relatives of individuals with a dMMR tumour when somatic and germline genomic testing is uninformative. As the assessment of mismatch repair through immunohistochemistry and/or microsatellite instability is increasingly applied across various tumour types for treatment planning, dMMR is increasingly detected in tumours where suspicion of hereditary aetiology is low. Our objective was to establish current practices and develop national guidance for investigating, and managing relatives of, patients with cancers demonstrating unexplained dMMR. METHODS: This was achieved through a virtual consensus meeting involving key stakeholders from the UK, through premeeting surveys, structured discussions and in-meeting polling to formulate best practice guidance. RESULTS: We identified variability in the availability of diagnostic technologies across specialist centres. It was agreed that equitable access to baseline testing is required, acknowledging the need for a pragmatic approach to investigating dMMR cancers not traditionally associated with Lynch syndrome. Factors such as family history, age, tumour type, protein loss pattern and extent of the investigation were deemed crucial in guiding family management. The term 'unexplained dMMR' was recommended over LLS. CONCLUSION: Decisions regarding investigations and future cancer risk management in patients and relatives should be nuanced, considering factors like clinical suspicion of hereditary predisposition to allocate limited resources efficiently and avoid unnecessary investigations in low-suspicion families
Germline predisposition to haematological malignancies: Best practice consensus guidelines from the UK Cancer Genetics Group (UKCGG), CanGene-CanVar and the NHS England Haematological Oncology Working Group.
The implementation of whole genome sequencing and large somatic gene panels in haematological malignancies is identifying an increasing number of individuals with either potential or confirmed germline predisposition to haematological malignancy. There are currently no national or international best practice guidelines with respect to management of carriers of such variants or of their at-risk relatives. To address this gap, the UK Cancer Genetics Group (UKCGG), CanGene-CanVar and the NHS England Haematological Oncology Working Group held a workshop over two days on 28-29th April 2022, with the aim of establishing consensus guidelines on relevant clinical and laboratory pathways. The workshop focussed on the management of disease-causing germline variation in the following genes: DDX41, CEBPA, RUNX1, ANKRD26, ETV6, GATA2. Using a pre-workshop survey followed by structured discussion and in-meeting polling, we achieved consensus for UK best practice in several areas. In particular, high consensus was achieved on issues regarding standardised reporting, variant classification, multidisciplinary team working and patient support. The best practice recommendations from this meeting may be applicable to an expanding number of other genes in this setting
UK consensus recommendations for clinical management of cancer risk for women with germline pathogenic variants in cancer predisposition genes; RAD51C, RAD51D, BRIP1 and PALB2.
Germline pathogenic variants (GPVs) in the cancer predisposition genes BRCA1, BRCA2, MLH1, MSH2, MSH6, BRIP1, PALB2, RAD51D and RAD51C are identified in approximately 15% of patients with ovarian cancer (OC). While there are clear guidelines around clinical management of cancer risk in patients with GPV in BRCA1, BRCA2, MLH1, MSH2 and MSH6, there are few guidelines on how to manage the more moderate OC risk in patients with GPV in BRIP1, PALB2, RAD51D and RAD51C, with clinical questions about appropriateness and timing of risk-reducing gynaecological surgery. Furthermore, while recognition of RAD51C and RAD51D as OC predisposition genes has been established for several years, an association with breast cancer (BC) has only more recently been described and clinical management of this risk has been unclear. With expansion of genetic testing of these genes to all patients with non-mucinous OC, new data on BC risk and improved estimates of OC risk, the UK Cancer Genetics Group and CanGene-CanVar project convened a 2-day meeting to reach a national consensus on clinical management of BRIP1, PALB2, RAD51D and RAD51C carriers in clinical practice. In this paper, we present a summary of the processes used to reach and agree on a consensus, as well as the key recommendations from the meeting
Extent of investigation and management of cases of ‘unexplained’ mismatch repair deficiency (u-dMMR): a UK Cancer Genetics Group consensus
Background: mismatch repair deficiency (dMMR) is a characteristic feature of cancers linked to Lynch syndrome. However, in most cases, it results from sporadic somatic events rather than hereditary factors. The term’Lynch-like syndrome’ (LLS) has been used to guide colorectal cancer surveillance for relatives of individuals with a dMMR tumour when somatic and germline genomic testing is uninformative. As the assessment of mismatch repair through immunohistochemistry and/or microsatellite instability is increasingly applied across various tumour types for treatment planning, dMMR is increasingly detected in tumours where suspicion of hereditary aetiology is low. Our objective was to establish current practices and develop national guidance for investigating, and managing relatives of, patients with cancers demonstrating unexplained dMMR.Methods: this was achieved through a virtual consensus meeting involving key stakeholders from the UK, through premeeting surveys, structured discussions and in-meeting polling to formulate best practice guidance.Results: we identified variability in the availability of diagnostic technologies across specialist centres. It was agreed that equitable access to baseline testing is required, acknowledging the need for a pragmatic approach to investigating dMMR cancers not traditionally associated with Lynch syndrome. Factors such as family history, age, tumour type, protein loss pattern and extent of the investigation were deemed crucial in guiding family management. The term’unexplained dMMR’ was recommended over LLS.Conclusion: decisions regarding investigations and future cancer risk management in patients and relatives should be nuanced, considering factors like clinical suspicion of hereditary predisposition to allocate limited resources efficiently and avoid unnecessary investigations in low-suspicion families.</p