28 research outputs found

    Triple correlation of the Riemann zeros

    Get PDF
    We use the conjecture of Conrey, Farmer and Zirnbauer for averages of ratios of the Riemann zeta function to calculate all the lower order terms of the triple correlation function of the Riemann zeros. A previous approach was suggested in 1996 by Bogomolny and Keating taking inspiration from semi-classical methods. At that point they did not write out the answer explicitly, so we do that here, illustrating that by our method all the lower order terms down to the constant can be calculated rigourously if one assumes the ratios conjecture of Conrey, Farmer and Zirnbauer. Bogomolny and Keating returned to their previous results simultaneously with this current work, and have written out the full expression. The result presented in this paper agrees precisely with their formula, as well as with our numerical computations, which we include here. We also include an alternate proof of the triple correlation of eigenvalues from random U(N) matrices which follows a nearly identical method to that for the Riemann zeros, but is based on the theorem for averages of ratios of characteristic polynomials

    Correlations of eigenvalues and Riemann zeros

    Full text link
    We present a new approach to obtaining the lower order terms for nn-correlation of the zeros of the Riemann zeta function. Our approach is based on the `ratios conjecture' of Conrey, Farmer, and Zirnbauer. Assuming the ratios conjecture we prove a formula which explicitly gives all of the lower order terms in any order correlation. Our method works equally well for random matrix theory and gives a new expression, which is structurally the same as that for the zeta function, for the nn-correlation of eigenvalues of matrices from U(N)

    Autocorrelation of Random Matrix Polynomials

    Full text link
    We calculate the autocorrelation functions (or shifted moments) of the characteristic polynomials of matrices drawn uniformly with respect to Haar measure from the groups U(N), O(2N) and USp(2N). In each case the result can be expressed in three equivalent forms: as a determinant sum (and hence in terms of symmetric polynomials), as a combinatorial sum, and as a multiple contour integral. These formulae are analogous to those previously obtained for the Gaussian ensembles of Random Matrix Theory, but in this case are identities for any size of matrix, rather than large-matrix asymptotic approximations. They also mirror exactly autocorrelation formulae conjectured to hold for L-functions in a companion paper. This then provides further evidence in support of the connection between Random Matrix Theory and the theory of L-functions

    On the spacing distribution of the Riemann zeros: corrections to the asymptotic result

    Full text link
    It has been conjectured that the statistical properties of zeros of the Riemann zeta function near z = 1/2 + \ui E tend, as EE \to \infty, to the distribution of eigenvalues of large random matrices from the Unitary Ensemble. At finite EE numerical results show that the nearest-neighbour spacing distribution presents deviations with respect to the conjectured asymptotic form. We give here arguments indicating that to leading order these deviations are the same as those of unitary random matrices of finite dimension Neff=log(E/2π)/12ΛN_{\rm eff}=\log(E/2\pi)/\sqrt{12 \Lambda}, where Λ=1.57314...\Lambda=1.57314 ... is a well defined constant.Comment: 9 pages, 3 figure

    Boundary conditions associated with the Painlev\'e III' and V evaluations of some random matrix averages

    Full text link
    In a previous work a random matrix average for the Laguerre unitary ensemble, generalising the generating function for the probability that an interval (0,s) (0,s) at the hard edge contains k k eigenvalues, was evaluated in terms of a Painlev\'e V transcendent in σ \sigma -form. However the boundary conditions for the corresponding differential equation were not specified for the full parameter space. Here this task is accomplished in general, and the obtained functional form is compared against the most general small s s behaviour of the Painlev\'e V equation in σ \sigma -form known from the work of Jimbo. An analogous study is carried out for the the hard edge scaling limit of the random matrix average, which we have previously evaluated in terms of a Painlev\'e \IIId transcendent in σ \sigma -form. An application of the latter result is given to the rapid evaluation of a Hankel determinant appearing in a recent work of Conrey, Rubinstein and Snaith relating to the derivative of the Riemann zeta function

    Roots of the derivative of the Riemann zeta function and of characteristic polynomials

    Full text link
    We investigate the horizontal distribution of zeros of the derivative of the Riemann zeta function and compare this to the radial distribution of zeros of the derivative of the characteristic polynomial of a random unitary matrix. Both cases show a surprising bimodal distribution which has yet to be explained. We show by example that the bimodality is a general phenomenon. For the unitary matrix case we prove a conjecture of Mezzadri concerning the leading order behavior, and we show that the same follows from the random matrix conjectures for the zeros of the zeta function.Comment: 24 pages, 6 figure

    A Random Matrix Model for Elliptic Curve L-Functions of Finite Conductor

    Full text link
    We propose a random matrix model for families of elliptic curve L-functions of finite conductor. A repulsion of the critical zeros of these L-functions away from the center of the critical strip was observed numerically by S. J. Miller in 2006; such behaviour deviates qualitatively from the conjectural limiting distribution of the zeros (for large conductors this distribution is expected to approach the one-level density of eigenvalues of orthogonal matrices after appropriate rescaling).Our purpose here is to provide a random matrix model for Miller's surprising discovery. We consider the family of even quadratic twists of a given elliptic curve. The main ingredient in our model is a calculation of the eigenvalue distribution of random orthogonal matrices whose characteristic polynomials are larger than some given value at the symmetry point in the spectra. We call this sub-ensemble of SO(2N) the excised orthogonal ensemble. The sieving-off of matrices with small values of the characteristic polynomial is akin to the discretization of the central values of L-functions implied by the formula of Waldspurger and Kohnen-Zagier.The cut-off scale appropriate to modeling elliptic curve L-functions is exponentially small relative to the matrix size N. The one-level density of the excised ensemble can be expressed in terms of that of the well-known Jacobi ensemble, enabling the former to be explicitly calculated. It exhibits an exponentially small (on the scale of the mean spacing) hard gap determined by the cut-off value, followed by soft repulsion on a much larger scale. Neither of these features is present in the one-level density of SO(2N). When N tends to infinity we recover the limiting orthogonal behaviour. Our results agree qualitatively with Miller's discrepancy. Choosing the cut-off appropriately gives a model in good quantitative agreement with the number-theoretical data.Comment: 38 pages, version 2 (added some plots

    ON THE ORTHOGONAL SYMMETRY OF L-FUNCTIONS OF A FAMILY OF HECKE GRÖSSENCHARACTERS

    Get PDF
    Abstract. The family of symmetric powers of an L-function associated with an elliptic curve with complex multiplication has received much attention from algebraic, automorphic and p-adic points of view. Here we examine this family from the perspectives of classical analytic number theory and random matrix theory, especially focusing on evidence for the symmetry type of the family. In particular, we investigate the values at the central point and give evidence that this family can be modeled by ensembles of orthogonal matrices. We prove an asymptotic formula with power savings for the average of these L-values, which reproduces, by a completely different method, an asymptotic formula proven by Greenberg and Villegas–Zagier. We give an upper bound for the second moment which is conjecturally too large by just one logarithm. We also give an explicit conjecture for the second moment of this family, with power savings. Finally, we compute the one level density for this family with a test function whose Fourier transform has limited support. It is known by the work of Villegas – Zagier that the subset of these L-functions which have even functional equations never vanish; we show to what extent this result is reflected by our analytic results
    corecore