1,330 research outputs found

    Uptake and release kinetics of 22 polar organic chemicals in the Chemcatcher passive sampler

    Get PDF
    The Chemcatcher passive sampler, which uses Empore™ disks as sampling phase, is frequently used to monitor polar organic chemicals in river water and effluents. Uptake kinetics need to be quantified to calculate time-weighted average concentrations from Chemcatcher field deployments. Information on release kinetics is needed if performance reference compounds (PRCs) are used to quantify the influence of environmental conditions on the uptake. In a series of uptake and elimination experiments, we used Empore™ SDB disks (poly(styrenedivinylbenzene) copolymer modified with sulfonic acid groups) as a sampling phase and 22 compounds with a logK ow (octanol-water partitioning coefficient) range from −2.6 to 3.8. Uptake experiments were conducted in river water or tap water and lasted up to 25days. Only 1 of 22 compounds (sulfamethoxazole) approached equilibrium in the uptake trials. Other compounds showed continuing non-linear uptake, even after 25days. All compounds could be released from SDB disks, and desorption was proportionally higher in disks loaded for shorter periods. Desorption showed two-phase characteristics, and desorption was proportionally higher for passively sorbed compounds compared to actively loaded compounds (active loading was performed by pulling spiked river water over SDB disks using vacuum). We hypothesise that the two-phase kinetics and better retention of actively loaded compounds—and compounds loaded for a longer period—may be caused by slow diffusion of chemicals within the polymer. As sorption and desorption did not show isotropic kinetics, it is not possible to develop robust PRCs for adsorbent material like SDB disk

    Pathfinder first light: alignment, calibration, and commissioning of the LINC-NIRVANA ground-layer adaptive optics subsystem

    Full text link
    We present descriptions of the alignment and calibration tests of the Pathfinder, which achieved first light during our 2013 commissioning campaign at the LBT. The full LINC-NIRVANA instrument is a Fizeau interferometric imager with fringe tracking and 2-layer natural guide star multi-conjugate adaptive optics (MCAO) systems on each eye of the LBT. The MCAO correction for each side is achieved using a ground layer wavefront sensor that drives the LBT adaptive secondary mirror and a mid-high layer wavefront sensor that drives a Xinetics 349 actuator DM conjugated to an altitude of 7.1 km. When the LINC-NIRVANA MCAO system is commissioned, it will be one of only two such systems on an 8-meter telescope and the only such system in the northern hemisphere. In order to mitigate risk, we take a modular approach to commissioning by decoupling and testing the LINC-NIRVANA subsystems individually. The Pathfinder is the ground-layer wavefront sensor for the DX eye of the LBT. It uses 12 pyramid wavefront sensors to optically co-add light from natural guide stars in order to make four pupil images that sense ground layer turbulence. Pathfinder is now the first LINC-NIRVANA subsystem to be fully integrated with the telescope and commissioned on sky. Our 2013 commissioning campaign consisted of 7 runs at the LBT with the tasks of assembly, integration and communication with the LBT telescope control system, alignment to the telescope optical axis, off-sky closed loop AO calibration, and finally closed loop on-sky AO. We present the programmatics of this campaign, along with the novel designs of our alignment scheme and our off-sky calibration test, which lead to the Pathfinder's first on-sky closed loop images

    Emissions of major gaseous and particulate species during experimental burns of southern African biomass

    Get PDF
    Characteristic vegetation and biofuels in major ecosystems of southern Africa were sampled during summer and autumn 2000 and burned under semicontrolled conditions. Elemental compositions of fuels and ash and emissions of CO2, CO, CH3COOH, HCOOH, NOX, NH3, HONO, HNO3, HCl, total volatile inorganic Cl and Br, SO2and particulate C, N, and major ions were measured. Modified combustion efficiencies (MCEs, median = 0.94) were similar to those of ambient fires. Elemental emissions factors (EFel) for CH3COOH were inversely correlated with MCEs; EFels for heading and mixed grass fires were higher than those for backing fires of comparable MCEs. NOX, NH3, HONO, and particulate N accounted for a median of 22% of emitted N; HNO3emissions were insignificant. Grass fires with the highest EFels for NH3corresponded to MCEs in the range of 0.93; grass fires with higher and low MCEs exhibited lower EFels. NH3emissions for most fuels were poorly correlated with fuel N. Most Cl and Br in fuel was emitted during combustion (median for each = 73%). Inorganic gases and particulate ions accounted for medians of 53% and 30% of emitted Cl and Br, respectively. About half of volatile inorganic Cl was HCl indicating significant emissions of other gaseous inorganic Cl species. Most fuel S (median = 76%) was emitted during combustion; SO2and particulate SO42−accounted for about half the flux. Mobilization of P by fire (median emission = 82%) implies large nutrient losses from burned regions and potentially important exogenous sources of fertilization for downwind ecosystems
    corecore