3,504 research outputs found

    The 2000 Periastron Passage of PSR B1259-63

    Get PDF
    We report here on a sequence of 28 observations of the binary pulsar system PSR B1259-63/SS2883 at four radio frequencies made with the Australia Telescope Compact Array around the time of the 2000 periastron passage. Observations made on 2000 Sep 1 show that the pulsar's apparent rotation measure (RM) reached a maximum of −14800±1800-14800 \pm 1800 rad m−2^{-2}, some 700 times the value measured away from periastron, and is the largest astrophysical RM measured. This value, combined with the dispersion measure implies a magnetic field in the Be star's wind of 6 mG. We find that the light curve of the unpulsed emission is similar to that obtained during the 1997 periastron but that differences in detail imply that the emission disc of the Be star is thicker and/or of higher density. The behaviour of the light curve at late times is best modelled by the adiabatic expansion of a synchrotron bubble formed in the pulsar/disc interaction. The expansion rate of the bubble ∼12\sim 12 km s−1^{-1} is surprisingly low but the derived magnetic field of 1.6 G close to that expected.Comment: 8 pages, 6 figures, 3 tables, LaTeX (mn.sty). Accepted for publication in the Monthly Notices of the Royal Astronomical Society. Also available at http://astronomy.swin.edu.au/staff/tconnors/publications.htm

    The jet-disk symbiosis without maximal jets: 1-D hydrodynamical jets revisited

    Get PDF
    In this work we discuss the recent criticism by Zdziarski of the maximal jet model derived in Falcke & Biermann (1995). We agree with Zdziarski that in general a jet's internal energy is not bounded by its rest-mass energy density. We describe the effects of the mistake on conclusions that have been made using the maximal jet model and show when a maximal jet is an appropriate assumption. The maximal jet model was used to derive a 1-D hydrodynamical model of jets in agnjet, a model that does multiwavelength fitting of quiescent/hard state X-ray binaries and low-luminosity active galactic nuclei. We correct algebraic mistakes made in the derivation of the 1-D Euler equation and relax the maximal jet assumption. We show that the corrections cause minor differences as long as the jet has a small opening angle and a small terminal Lorentz factor. We find that the major conclusion from the maximal jet model, the jet-disk symbiosis, can be generally applied to astrophysical jets. We also show that isothermal jets are required to match the flat radio spectra seen in low-luminosity X-ray binaries and active galactic nuclei, in agreement with other works.Comment: 7 pages, accepted by A&

    New Deal Labor Policy and the American Industrial Economy

    Get PDF
    A Review of New Deal Labor Policy and the American Industrial Economy by Stanley Vitto

    Breaking degeneracy in jet dynamics: multi-epoch joint modelling of the BL Lac PKS 2155-304

    Get PDF
    Supermassive black holes can launch powerful jets which can be some of the most luminous multi-wavelength sources; decades after their discovery their physics and energetics are still poorly understood. The past decade has seen a dramatic improvement in the quality of available data, but despite this improvement the semi-analytical modelling of jets has advanced slowly: simple one-zone models are still the most commonly employed method of interpreting data, in particular for AGN jets. These models can roughly constrain the properties of jets but they cannot unambiguously couple their emission to the launching regions and internal dynamics, which can be probed with simulations. However, simulations are not easily comparable to observations because they cannot yet self-consistently predict spectra. We present an advanced semi-analytical model which accounts for the dynamics of the whole jet, starting from a simplified parametrization of Relativistic Magnetohydrodynamics in which the magnetic flux is converted into bulk kinetic energy. To benchmark the model we fit six quasisimultaneous, multi-wavelength spectral energy distributions of the BL Lac PKS 2155-304 obtained by the TANAMI program, and we address the degeneracies inherent to such a complex model by employing a state-of-the-art exploration of parameter space, which so far has been mostly neglected in the study of AGN jets. We find that this new approach is much more effective than a single-epoch fit in providing meaningful constraints on model parameters.Comment: Accepted for publication on MNRA

    Evolution of the Small Magellanic Cloud

    Full text link
    Based on the results of N-body simulations on the last 2.5 Gyr evolution of the Large and Small Magellanic Clouds (LMC and SMC, respectively) interacting with the Galaxy, we firstly show when and where the leading arms (LAs) of the Magellanic stream (MS) can pass through the Galactic plane after the MS formation. We secondly show collisions between the outer Galactic HI disk and the LAs of the MS can create giant HI holes and chimney-like structures in the disk about 0.2 Gyr ago. We thirdly show that a large amount of metal-poor gas is stripped from the SMC and transfered to the LMC during the tidal interaction between the Clouds and the Galaxy about 0.2 and 1.3 Gyr ago. We thus propose that this metal-poor gas can closely be associated with the origin of LMC's young and intermediate-age stars and star clusters with distinctively low-metallicities with [Fe/H] < -0.6.Comment: 4 pages, 3 figures, to appear in the proceedings of ``Galaxies in the Local Volume'', Sydney, 8 to 13 July, 200

    High-resolution N-body Simulations of Galactic Cannibalism: The Magellanic Stream

    Full text link
    Hierarchical clustering represents the favoured paradigm for galaxy formation throughout the Universe; due to its proximity, the Magellanic system offers one of the few opportunities for astrophysicists to decompose the full six-dimensional phase-space history of a satellite in the midst of being cannibalised by its host galaxy. The availability of improved observational data for the Magellanic Stream and parallel advances in computational power has led us to revisit the canonical tidal model describing the disruption of the Small Magellanic Cloud and the consequent formation of the Stream. We suggest improvements to the tidal model in light of these recent advances.Comment: 6 pages, 4 figures, LaTeX (gcdv.sty). Refereed contribution to the 5th Galactic Chemodynamics conference held in Swinburne, July 2003. Accepted for publication in PASA. Version with high resolution figures available at http://astronomy.swin.edu.au/staff/tconnors/publications.htm
    • …
    corecore