66 research outputs found

    EGF-Like-Domain-7 Is Required for VEGF-Induced Akt/ERK Activation and Vascular Tube Formation in an Ex Vivo Angiogenesis Assay

    Get PDF
    EGFL7 is a secreted angiogenic factor, which in contrast to the well-known secreted angiogenic molecules VEGF and FGF-2, is almost exclusively expressed by endothelial cells and may act in an autocrine fashion. Prior studies have shown EGFL7 to mediate its angiogenic effects by interfering with the Notch pathway and/or via the intronic miR126. Less is known about its effects on VEGF signaling. We wanted to investigate the role of epidermal growth factor-like domain 7 (EGFL7) in VEGF-driven angiogenesis using an ex vivo Matrigel-embedded mouse eye cup assay and siRNA mediated knockdown of EGFL7 by siRNA. Our results suggested that VEGF-induced vascular tube formation was significantly impaired after siRNA downregulation of EGFL7. In addition, knockdown of EGFL7 suppressed VEGF upregulation of phospho-Akt and phospho-Erk(1/2) in endothelial cells, but did not alter VEGFR phosphorylation and neuropilin-1 protein expression or miR126 expression. Thus, in conclusion, EGFL7 is required for VEGF upregulation of the Akt/Erk (1/2) pathway during angiogenesis, and may represent a new therapeutic target in diseases of pathological neovascularization

    Estimating the subsolar magnetopause position from soft X-ray images using a low-pass image filter

    Get PDF
    The Lunar Environment heliospheric X-ray Imager (LEXI) and Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) missions will image the Earth’s dayside magnetopause and cusps in soft X-rays after their respective launches in the near future, to specify global magnetic reconnection modes for varying solar wind conditions. To support the success of these scientific missions, it is critical to develop techniques that extract the magnetopause locations from the observed soft X-ray images. In this research, we introduce a new geometric equation that calculates the subsolar magnetopause position (\begin{document}Rs {R}_{\mathrm{s}} \end{document}) from a satellite position, the look direction of the instrument, and the angle at which the X-ray emission is maximized. Two assumptions are used in this method: (1) The look direction where soft X-ray emissions are maximized lies tangent to the magnetopause, and (2) the magnetopause surface near the subsolar point is almost spherical and thus \begin{document}Rs {R}_{\mathrm{s}} \end{document} is nearly equal to the radius of the magnetopause curvature. We create synthetic soft X-ray images by using the Open Geospace General Circulation Model (OpenGGCM) global magnetohydrodynamic model, the galactic background, the instrument point spread function, and Poisson noise. We then apply the fast Fourier transform and Gaussian low-pass filters to the synthetic images to remove noise and obtain accurate look angles for the soft X-ray peaks. From the filtered images, we calculate \begin{document}Rs {R}_{\mathrm{s}} \end{document} and its accuracy for different LEXI locations, look directions, and solar wind densities by using the OpenGGCM subsolar magnetopause location as ground truth. Our method estimates \begin{document}Rs {R}_{\mathrm{s}} \end{document} with an accuracy of \begin{document}10  cm3 {10\;\mathrm{c}\mathrm{m}}^{-3} \end{document}. The accuracy improves for greater solar wind densities and during southward interplanetary magnetic fields. The method captures the magnetopause motion during southward interplanetary magnetic field turnings. Consequently, the technique will enable quantitative analysis of the magnetopause motion and help reveal the dayside reconnection modes for dynamic solar wind conditions. This technique will support the LEXI and SMILE missions in achieving their scientific objectives

    Inhibition of the alternative complement pathway preserves photoreceptors after retinal injury

    Get PDF
    * Degeneration of photoreceptors is a primary cause of vision loss worldwide, making the underlying mechanisms surrounding photoreceptor cell death critical to developing new treatment strategies. Retinal detachment, characterized by the separation of photoreceptors from the underlying retinal pigment epithelium, is a sight-threatening event that can happen in a number of retinal diseases. The detached photoreceptors undergo apoptosis and programmed necrosis. Given that photoreceptors are nondividing cells, their loss leads to irreversible visual impairment even after successful retinal reattachment surgery. To better understand the underlying disease mechanisms, we analyzed innate immune system regulators in the vitreous of human patients with retinal detachment and correlated the results with findings in a mouse model of retinal detachment. We identified the alternative complement pathway as promoting early photoreceptor cell death during retinal detachment. Photoreceptors down-regulate membrane-bound inhibitors of complement, allowing for selective targeting by the alternative complement pathway. When photoreceptors in the detached retina were removed from the primary source of oxygen and nutrients (choroidal vascular bed), the retina became hypoxic, leading to an up-regulation of complement factor B, a key mediator of the alternative pathway. Inhibition of the alternative complement pathway in knockout mice or through pharmacological means ameliorated photoreceptor cell death during retinal detachment. Our current study begins to outline the mechanism by which the alternative complement pathway facilitates photoreceptor cell death in the damaged retina
    corecore