9,180 research outputs found

    Inter-cluster filaments in a Λ\LambdaCDM Universe

    Full text link
    The large--scale structure (LSS) in the Universe comprises a complicated filamentary network of matter. We study this network using a high--resolution simulation of structure formation of a Λ\Lambda Cold Dark Matter cosmology. We investigate the distribution of matter between neighbouring large haloes whose masses are comparable to massive clusters of galaxies. We identify a total of 228 filaments between neighbouring clusters. Roughly half of the filaments are either warped or lie off the cluster--cluster axis. We find that straight filaments on the average are shorter than warped ones. More massive clusters are connected to more filaments than less massive ones on average. This finding indicates that the most massive clusters form at the intersections of the filamentary backbone of LSS. For straight filaments, we compute mass profiles. Radial profiles show a fairly well--defined radius, rsr_s, beyond which the profiles follow an r2r^{-2} power law fairly closely. For the majority of filaments, rsr_s lies between 1.5 h1h^{-1} Mpc and 2.0 h1h^{-1} Mpc. The enclosed overdensity inside rsr_s varies between a few times up to 25 times mean density, independent of the length of the filaments. Along the filaments' axes, material is not distributed uniformly. Towards the clusters, the density rises, indicating the presence of the cluster infall regions. In addition, we also find some sheet--like connections between clusters. In roughly a fifth of all cluster--cluster connections where we could not identify a filament or sheet, projection effects lead to filamentary structures in the projected mass distribution. (abridged)Comment: 10 pages, 18 figures; submitted to MNRAS; updated: final version, accepted for publicatio

    Alloreactive cytotoxic T lymphocytes generated in the presence of viral- derived peptides show exquisite peptide and MHC specificity

    Get PDF
    The nature of alloreactivity to MHC molecules has been enigmatic, primarily because of the observation that allogeneic responses are considerably stronger than syngeneic responses. To better determine the specificity potential of allogeneic responses, we have generated alloreactive CTL specific for exogenous, viral-derived peptide ligands. This approach allowed us to critically evaluate both the peptide- and MHC-specificity of these alloreactive T cells. Exploiting the accessibility of the H-2Ld class I molecule for exogenous peptide ligands, alloreactive CTL were generated that are specific for either murine cytomegalovirus (MCMV) or lymphocytic choriomeningitis virus (LCMV) peptides bound by Ld alloantigens. Peptide specificity was initially observed in bulk cultures of alloreactive CTL only when tested on peptide-sensitized T2.Ld target cells that have defective presentation of endogenous peptides. Subsequent cloning of bulk alloreactive CTL lines generated to MCMV yielded CTL clones that had exquisitely specific MCMV peptide recognition requirement. All of the MCMV/Ld alloreactive CTL clones were also exquisitely MHC-specific in that none of the CTL clones lysed targets expressing MCMV/Lq complexes, even though Lq differs from Ld by only six amino acid residues and Lq also binds the MCMV peptide. This observation clearly demonstrates that alloreactive CTL are capable of the same degree of specificity for target cell recognition as are syngeneic CTL in MHC-restricted responses

    Differentiation of Cardiac from Noncardiac Pleural Effusions in Cats using Second-Generation Quantitative and Point-of-Care NT-proBNP Measurements

    Get PDF
    BACKGROUND: Pleural effusion is a common cause of dyspnea in cats. N‐terminal pro‐B‐type natriuretic peptide (NT‐proBNP) measurement, using a first‐generation quantitative ELISA, in plasma and pleural fluid differentiates cardiac from noncardiac causes of pleural effusion. HYPOTHESIS/OBJECTIVES: To determine whether NT‐proBNP measurements using second‐generation quantitative ELISA and point‐of‐care (POC) tests in plasma and pleural fluid distinguish cardiac from noncardiac pleural effusions and how results compare to the first‐generation ELISA. ANIMALS: Thirty‐eight cats (US cohort) and 40 cats (UK cohort) presenting with cardiogenic or noncardiogenic pleural effusion. METHODS: Prospective cohort study. Twenty‐one and 17 cats in the US cohort, and 22 and 18 cats in the UK cohort were classified as having cardiac or noncardiac pleural effusion, respectively. NT‐proBNP concentrations in paired plasma and pleural fluid samples were measured using second‐generation ELISA and POC assays. RESULTS: The second‐generation ELISA differentiated cardiac from noncardiac pleural effusion with good diagnostic accuracy (plasma: sensitivity, 95.2%, specificity, 82.4%; pleural fluid: sensitivity, 100%, specificity, 76.5%). NT‐proBNP concentrations were greater in pleural fluid (719 pmol/L (134–1500)) than plasma (678 pmol/L (61–1500), P = 0.003), resulting in different cut‐off values depending on the sample type. The POC test had good sensitivity (95.2%) and specificity (87.5%) when using plasma samples. In pleural fluid samples, the POC test had good sensitivity (100%) but low specificity (64.7%). Diagnostic accuracy was similar between first‐ and second‐generation ELISA assays. CONCLUSIONS AND CLINICAL IMPORTANCE: Measurement of NT‐proBNP using a quantitative ELISA in plasma and pleural fluid or POC test in plasma, but not pleural fluid, distinguishes cardiac from noncardiac causes of pleural effusion in cats

    Life interrupted and life regained? Coping with stroke at a young age

    Get PDF
    Stroke is a leading cause of disability across the developed world, affecting an increasing number of younger people. In this article, we seek to understand the experience of stroke as a disabling life situation among young people and the strategies that they use to recover and cope. Directed content analysis was conducted from interviews with 17 community-dwelling stroke survivors aged 55 years and younger across the United Kingdom. The sample was drawn from a larger maximum variation sample of stroke survivors. Using the sociological concepts of biographical disruption and biographical repair as a guide, excerpts from the interviews pertaining to aspects of the patients’ life that were interrupted, in addition to how they coped with the changes, were selected and analysed. All individuals described an ‘‘altered sense of self,’’ a theme that included loss of identity, family disruption, and/or loss of valued activities. Individuals sought to adapt their sense of self by seeking external support, by restoring normality, and/or through positive reflection. Despite the adapted self that emerged, most individuals continued to experience impairments. While young stroke survivors adapt to their illness over time, they continue to experience impairments and disruptions in their personal and work lives.Aholistic model of rehabilitation that helps individuals regain the capacity for everyday activities related to work, family life, and leisure can begin to address the emotional ramifications of diseases such as stroke, restore wellness, and work towards minimizing the burden felt by family caregivers and children

    Astronomy in the Cloud: Using MapReduce for Image Coaddition

    Full text link
    In the coming decade, astronomical surveys of the sky will generate tens of terabytes of images and detect hundreds of millions of sources every night. The study of these sources will involve computation challenges such as anomaly detection and classification, and moving object tracking. Since such studies benefit from the highest quality data, methods such as image coaddition (stacking) will be a critical preprocessing step prior to scientific investigation. With a requirement that these images be analyzed on a nightly basis to identify moving sources or transient objects, these data streams present many computational challenges. Given the quantity of data involved, the computational load of these problems can only be addressed by distributing the workload over a large number of nodes. However, the high data throughput demanded by these applications may present scalability challenges for certain storage architectures. One scalable data-processing method that has emerged in recent years is MapReduce, and in this paper we focus on its popular open-source implementation called Hadoop. In the Hadoop framework, the data is partitioned among storage attached directly to worker nodes, and the processing workload is scheduled in parallel on the nodes that contain the required input data. A further motivation for using Hadoop is that it allows us to exploit cloud computing resources, e.g., Amazon's EC2. We report on our experience implementing a scalable image-processing pipeline for the SDSS imaging database using Hadoop. This multi-terabyte imaging dataset provides a good testbed for algorithm development since its scope and structure approximate future surveys. First, we describe MapReduce and how we adapted image coaddition to the MapReduce framework. Then we describe a number of optimizations to our basic approach and report experimental results comparing their performance.Comment: 31 pages, 11 figures, 2 table

    Life interrupted and life regained? Coping with stroke at a young age

    Get PDF
    Stroke is a leading cause of disability across the developed world, affecting an increasing number of younger people. In this article, we seek to understand the experience of stroke as a disabling life situation among young people and the strategies that they use to recover and cope. Directed content analysis was conducted from interviews with 17 community-dwelling stroke survivors aged 55 years and younger across the United Kingdom. The sample was drawn from a larger maximum variation sample of stroke survivors. Using the sociological concepts of biographical disruption and biographical repair as a guide, excerpts from the interviews pertaining to aspects of the patients’ life that were interrupted, in addition to how they coped with the changes, were selected and analysed. All individuals described an ‘‘altered sense of self,’’ a theme that included loss of identity, family disruption, and/or loss of valued activities. Individuals sought to adapt their sense of self by seeking external support, by restoring normality, and/or through positive reflection. Despite the adapted self that emerged, most individuals continued to experience impairments. While young stroke survivors adapt to their illness over time, they continue to experience impairments and disruptions in their personal and work lives.Aholistic model of rehabilitation that helps individuals regain the capacity for everyday activities related to work, family life, and leisure can begin to address the emotional ramifications of diseases such as stroke, restore wellness, and work towards minimizing the burden felt by family caregivers and children
    corecore