3 research outputs found

    Energy Flux and Characteristic Energy of Electrons Over Jupiter's Main Auroral Emission

    Full text link
    Jupiter's ultraviolet (UV) aurorae, the most powerful and intense in the solar system, are caused by energetic electrons precipitating from the magnetosphere into the atmosphere where they excite the molecular hydrogen. Previous studies focused on case analyses and/or greater than 30-keV energy electrons. Here for the first time we provide a comprehensive evaluation of Jovian auroral electron characteristics over the entire relevant range of energies ( 100 eV to 1 MeV). The focus is on the first eight perijoves providing a coarse but complete System III view of the northern and southern auroral regions with corresponding UV observations. The latest magnetic field model JRM09 with a current sheet model is used to map Juno's magnetic foot point onto the UV images and relate the electron measurements to the UV features. We find a recurring pattern where the 3- to 30-keV electron energy flux peaks in a region just equatorward of the main emission. The region corresponds to a minimum of the electron characteristic energy (\textless10 keV). Its polarward edge corresponds to the equatorward edge of the main oval, which is mapped at M shells of 51. A refined current sheet model will likely bring this boundary closer to the expected 20–30 RJ. Outside that region, the \textgreater100-keV electrons contribute to most (\textgreater 70–80\%) of the total downward energy flux and the characteristic energy is usually around 100 keV or higher. We examine the UV brightness per incident energy flux as a function of characteristic energy and compare it to expectations from a model

    Energetic Particles and Acceleration Regions Over Jupiter's Polar Cap and Main Aurora: A Broad Overview

    Full text link
    Previous Juno mission event studies revealed powerful electron and ion acceleration, to 100s of kiloelectron volts and higher, at low altitudes over Jupiter's main aurora and polar cap (PC; poleward of the main aurora). Here we examine 30–1200 keV JEDI-instrument particle data from the first 16 Juno orbits to determine how common, persistent, repeatable, and ordered these processes are. For the PC regions, we find (1) upward electron angle beams, sometimes extending to megaelectron volt energies, are persistently present in essentially all portions of the polar cap but are generated by two distinct and spatially separable processes. (2) Particle evidence for megavolt downward electrostatic potentials are observable for 80 of the polar cap crossings and over substantial fractions of the PC area. For the main aurora, with the orbit favoring the duskside, we find that (1) three distinct zones are observed that are generally arranged from lower to higher latitudes but sometimes mixed. They are designated here as the diffuse aurora (DifA), Zone-I (ZI(D)) showing primarily downward electron acceleration, and Zone-II (ZII(B)) showing bidirectional acceleration with the upward intensities often greater than downward intensities. (2) ZI(D) and ZII(B) sometimes (but not always) contain, respectively, downward electron inverted Vs and downward proton inverted Vs, (potentials up to 400 kV) but, otherwise, have broadband distributions. (3) Surprisingly, both ZI(D) and ZII(B) can generate equally powerful auroral emissions. It is suggested but demonstrated for intense portions of only one auroral crossing, that ZI(D) and ZII(B) are associated, respectively, with upward and downward electric currents
    corecore