1,368 research outputs found
"Big" Divisor D3/D7 Swiss Cheese Phenomenology
We review progress made over the past couple of years in the field of Swiss
Cheese Phenomenology involving a mobile space-time filling D3-brane and
stack(s) of fluxed D7-branes wrapping the "big" (as opposed to the "small")
divisor in (the orientifold of a) Swiss-Cheese Calabi-Yau. The topics reviewed
include reconciliation of large volume cosmology and phenomenology, evaluation
of soft supersymmetry breaking parameters, one-loop RG-flow equations'
solutions for scalar masses, obtaining fermionic (possibly first two
generations' quarks/leptons) mass scales in the O(MeV-GeV)-regime as well as
(first two generations') neutrino masses (and their one-loop RG flow) of around
an eV. The heavy sparticles and the light fermions indicate the possibility of
"split SUSY" large volume scenario.Comment: Invited review for MPLA, 14 pages, LaTe
Preliminary analysis of space mission applications for electromagnetic launchers
The technical and economic feasibility of using electromagnetically launched EML payloads propelled from the Earth's surface to LEO, GEO, lunar orbit, or to interplanetary space was assessed. Analyses of the designs of rail accelerators and coaxial magnetic accelerators show that each is capable of launching to space payloads of 800 KG or more. A hybrid launcher in which EML is used for the first 2 KM/sec followed by chemical rocket stages was also tested. A cost estimates study shows that one to two EML launches per day are needed to break even, compared to a four-stage rocket. Development models are discussed for: (1) Earth orbital missions; (2) lunar base supply mission; (3) solar system escape mission; (4) Earth escape missions; (5) suborbital missions; (6) electromagnetic boost missions; and (7) space-based missions. Safety factors, environmental impacts, and EML systems analysis are discussed. Alternate systems examined include electrothermal thrustors, an EML rocket gun; an EML theta gun, and Soviet electromagnetic accelerators
Bootstrapping the Coronal Magnetic Field with STEREO: I. Unipolar Potential Field Modeling
We investigate the recently quantified misalignment of between the 3-D geometry of stereoscopically triangulated
coronal loops observed with STEREO/EUVI (in four active regions) and
theoretical (potential or nonlinear force-free) magnetic field models
extrapolated from photospheric magnetograms. We develop an efficient method of
bootstrapping the coronal magnetic field by forward-fitting a parameterized
potential field model to the STEREO-observed loops. The potential field model
consists of a number of unipolar magnetic charges that are parameterized by
decomposing a photospheric magnetogram from MDI. The forward-fitting method
yields a best-fit magnetic field model with a reduced misalignment of
. We evaluate also stereoscopic
measurement errors and find a contribution of , which constrains the residual misalignment to
, which is likely
due to the nonpotentiality of the active regions. The residual misalignment
angle of the potential field due to nonpotentiality is found to
correlate with the soft X-ray flux of the active region, which implies a
relationship between electric currents and plasma heating.Comment: 12 figures, manuscript submitted to ApJ, 2010 Apr 2
On two problems in graph Ramsey theory
We study two classical problems in graph Ramsey theory, that of determining
the Ramsey number of bounded-degree graphs and that of estimating the induced
Ramsey number for a graph with a given number of vertices.
The Ramsey number r(H) of a graph H is the least positive integer N such that
every two-coloring of the edges of the complete graph contains a
monochromatic copy of H. A famous result of Chv\'atal, R\"{o}dl, Szemer\'edi
and Trotter states that there exists a constant c(\Delta) such that r(H) \leq
c(\Delta) n for every graph H with n vertices and maximum degree \Delta. The
important open question is to determine the constant c(\Delta). The best
results, both due to Graham, R\"{o}dl and Ruci\'nski, state that there are
constants c and c' such that 2^{c' \Delta} \leq c(\Delta) \leq 2^{c \Delta
\log^2 \Delta}. We improve this upper bound, showing that there is a constant c
for which c(\Delta) \leq 2^{c \Delta \log \Delta}.
The induced Ramsey number r_{ind}(H) of a graph H is the least positive
integer N for which there exists a graph G on N vertices such that every
two-coloring of the edges of G contains an induced monochromatic copy of H.
Erd\H{o}s conjectured the existence of a constant c such that, for any graph H
on n vertices, r_{ind}(H) \leq 2^{c n}. We move a step closer to proving this
conjecture, showing that r_{ind} (H) \leq 2^{c n \log n}. This improves upon an
earlier result of Kohayakawa, Pr\"{o}mel and R\"{o}dl by a factor of \log n in
the exponent.Comment: 18 page
The critical window for the classical Ramsey-Tur\'an problem
The first application of Szemer\'edi's powerful regularity method was the
following celebrated Ramsey-Tur\'an result proved by Szemer\'edi in 1972: any
K_4-free graph on N vertices with independence number o(N) has at most (1/8 +
o(1)) N^2 edges. Four years later, Bollob\'as and Erd\H{o}s gave a surprising
geometric construction, utilizing the isoperimetric inequality for the high
dimensional sphere, of a K_4-free graph on N vertices with independence number
o(N) and (1/8 - o(1)) N^2 edges. Starting with Bollob\'as and Erd\H{o}s in
1976, several problems have been asked on estimating the minimum possible
independence number in the critical window, when the number of edges is about
N^2 / 8. These problems have received considerable attention and remained one
of the main open problems in this area. In this paper, we give nearly
best-possible bounds, solving the various open problems concerning this
critical window.Comment: 34 page
Discovery of an Unbound Hyper-Velocity Star in the Milky Way Halo
We have discovered a star, SDSS J090745.0+024507, leaving the Galaxy with a
heliocentric radial velocity of +853+-12 km/s, the largest velocity ever
observed in the Milky Way halo. The star is either a hot blue horizontal branch
star or a B9 main sequence star with a heliocentric distance ~55 kpc. Corrected
for the solar reflex motion and to the local standard of rest, the Galactic
rest-frame velocity is +709 km/s.
Because its radial velocity vector points 173.8 deg from the Galactic center,
we suggest that this star is the first example of a hyper-velocity star ejected
from the Galactic center as predicted by Hills and later discussed by Yu &
Tremaine. The star has [Fe/H]~0, consistent with a Galactic center origin, and
a travel time of <80 Myr from the Galactic center, consistent with its stellar
lifetime. If the star is indeed traveling from the Galactic center, it should
have a proper motion of 0.3 mas/yr observable with GAIA. Identifying additional
hyper-velocity stars throughout the halo will constrain the production rate
history of hyper-velocity stars at the Galactic center.Comment: 4 pages, submitted to ApJ Letter
Hard X-ray standing-wave photoemission insights into the structure of an epitaxial Fe/MgO multilayer magnetic tunnel junction
The Fe/MgO magnetic tunnel junction is a classic spintronic system, with current importance technologically and interest for future innovation. The key magnetic properties are linked directly to the structure of hard-to-access buried interfaces, and the Fe and MgO components near the surface are unstable when exposed to air, making a deeper probing, nondestructive, in-situ measurement ideal for this system. We have thus applied hard X-ray photoemission spectroscopy (HXPS) and standing-wave (SW) HXPS in the few kilo-electron-volt energy range to probe the structure of an epitaxially grown MgO/Fe superlattice. The superlattice consists of 9 repeats of MgO grown on Fe by magnetron sputtering on an MgO(001) substrate, with a protective Al2O3 capping layer. We determine through SW-HXPS that 8 of the 9 repeats are similar and ordered, with a period of 33 ± 4 Å, with the minor presence of FeO at the interfaces and a significantly distorted top bilayer with ca. 3 times the oxidation of the lower layers at the top MgO/Fe interface. There is evidence of asymmetrical oxidation on the top and bottom of the Fe layers. We find agreement with dark-field scanning transmission electron microscope (STEM) and X-ray reflectivity measurements. Through the STEM measurements, we confirm an overall epitaxial stack with dislocations and warping at the interfaces of ca. 5 Å. We also note a distinct difference in the top bilayer, especially MgO, with possible Fe inclusions. We thus demonstrate that SW-HXPS can be used to probe deep buried interfaces of novel magnetic devices with few-angstrom precision
K\"{a}hler moduli inflation and WMAP7
Inflationary potentials are investigated for specific models in type IIB
string theory via flux compactification. As concrete models, we investigate
several cases where the internal spaces are weighted projective spaces. The
models we consider have two, three, or four K\"{a}hler moduli. The K\"{a}hler
moduli play a role of inflaton fields and we consider the cases where only one
of the moduli behaves as the inflaton field. For the cases with more than two
moduli, we choose the diagonal basis for the expression of the Calabi-Yau
volume, which can be written down as a function of four-cycle. With the
combination of multiple moduli, we can express the multi-dimensional problem as
an effective one-dimensional problem. In the large volume scenario, the
potentials of these three models turn out to be of the same type. By taking the
specific limit of the relation between the moduli and the volume, the
potentials are reduced to simpler ones which induce inflation. As a toy model
we first consider the simple potential. We calculate the slow roll parameters
, and for each inflationary potential. Then, we check
whether the potentials give reasonable spectral indices and their running
's by comparing with the recently released seven-year WMAP data. For
both models, we see reasonable spectral indices for the number of e-folding
. Conversely, by inserting the observed seven-year WMAP data, we see
that the potential of the toy model gives requisite number of e-folds while the
potential of the K\"{a}hler moduli gives much smaller number of e-folding.
Finally, we see that two models do not produce reasonable values of the running
of the spectral index.Comment: 22 pages, 6 figure
Rapid, widespread transduction of the murine myocardium using self-complementary Adeno-associated virus
Adeno-associated virus (AAV) has shown great promise as a gene transfer vector. However, the incubation time needed to attain significant levels of gene expression is often too long for some clinical applications. Self-complementary AAV (scAAV) enters the cell as double stranded DNA, eliminating the step of second-strand synthesis, proven to be the rate-limiting step for gene expression of single-stranded AAV (ssAAV). The aim of this study was to compare the efficiency of these two types of AAV vectors in the murine myocardium. Four day old CD-1 mice were injected with either of the two AAV constructs, both expressing GFP and packaged into the AAV1 capsid. The animals were held for 4, 6, 11 or 21 days, after which they were euthanized and their hearts were excised. Serial sections of the myocardial tissue were used for real-time PCR quantification of AAV genome copies and for confocal microscopy. Although we observed similar numbers of AAV genomes at each of the different time points present in both the scAAV and the ssAAV infected hearts, microscopic analysis showed expression of GFP as early as 4 days in animals injected with the scAAV, while little or no expression was observed with the ssAAV constructs until day 11. AAV transduction of murine myocardium is therefore significantly enhanced using scAAV constructs
Dark Matter and LHC: What is the Connection?
We review what can (and cannot) be learned if dark matter is detected in one
or more experiments, emphasizing the importance of combining LHC data with
direct, astrophysical and cosmological probes of dark matter. We briefly review
the conventional picture of a thermally produced WIMP relic density and its
connection with theories of electroweak symmetry breaking. We then discuss both
experimental and theoretical reasons why one might generically expect this
picture to fail. If this is the case, we argue that a combined effort bringing
together all types of data -- combined with explicitly constructed theoretical
models -- will be the only way to achieve a complete understanding of the dark
matter in our universe and become confident that any candidate actually
provides the relic density.Comment: 25 pages, 2 figures, Invited review for Modern Physics Letters
- …