1,368 research outputs found

    "Big" Divisor D3/D7 Swiss Cheese Phenomenology

    Full text link
    We review progress made over the past couple of years in the field of Swiss Cheese Phenomenology involving a mobile space-time filling D3-brane and stack(s) of fluxed D7-branes wrapping the "big" (as opposed to the "small") divisor in (the orientifold of a) Swiss-Cheese Calabi-Yau. The topics reviewed include reconciliation of large volume cosmology and phenomenology, evaluation of soft supersymmetry breaking parameters, one-loop RG-flow equations' solutions for scalar masses, obtaining fermionic (possibly first two generations' quarks/leptons) mass scales in the O(MeV-GeV)-regime as well as (first two generations') neutrino masses (and their one-loop RG flow) of around an eV. The heavy sparticles and the light fermions indicate the possibility of "split SUSY" large volume scenario.Comment: Invited review for MPLA, 14 pages, LaTe

    Preliminary analysis of space mission applications for electromagnetic launchers

    Get PDF
    The technical and economic feasibility of using electromagnetically launched EML payloads propelled from the Earth's surface to LEO, GEO, lunar orbit, or to interplanetary space was assessed. Analyses of the designs of rail accelerators and coaxial magnetic accelerators show that each is capable of launching to space payloads of 800 KG or more. A hybrid launcher in which EML is used for the first 2 KM/sec followed by chemical rocket stages was also tested. A cost estimates study shows that one to two EML launches per day are needed to break even, compared to a four-stage rocket. Development models are discussed for: (1) Earth orbital missions; (2) lunar base supply mission; (3) solar system escape mission; (4) Earth escape missions; (5) suborbital missions; (6) electromagnetic boost missions; and (7) space-based missions. Safety factors, environmental impacts, and EML systems analysis are discussed. Alternate systems examined include electrothermal thrustors, an EML rocket gun; an EML theta gun, and Soviet electromagnetic accelerators

    Bootstrapping the Coronal Magnetic Field with STEREO: I. Unipolar Potential Field Modeling

    Full text link
    We investigate the recently quantified misalignment of αmis2040\alpha_{mis} \approx 20^\circ-40^\circ between the 3-D geometry of stereoscopically triangulated coronal loops observed with STEREO/EUVI (in four active regions) and theoretical (potential or nonlinear force-free) magnetic field models extrapolated from photospheric magnetograms. We develop an efficient method of bootstrapping the coronal magnetic field by forward-fitting a parameterized potential field model to the STEREO-observed loops. The potential field model consists of a number of unipolar magnetic charges that are parameterized by decomposing a photospheric magnetogram from MDI. The forward-fitting method yields a best-fit magnetic field model with a reduced misalignment of αPF1320\alpha_{PF} \approx 13^\circ-20^\circ. We evaluate also stereoscopic measurement errors and find a contribution of αSE712\alpha_{SE}\approx 7^\circ-12^\circ, which constrains the residual misalignment to αNP=αPFαSE59\alpha_{NP}=\alpha_{PF}-\alpha_{SE}\approx 5^\circ -9^\circ, which is likely due to the nonpotentiality of the active regions. The residual misalignment angle αNP\alpha_{NP} of the potential field due to nonpotentiality is found to correlate with the soft X-ray flux of the active region, which implies a relationship between electric currents and plasma heating.Comment: 12 figures, manuscript submitted to ApJ, 2010 Apr 2

    On two problems in graph Ramsey theory

    Get PDF
    We study two classical problems in graph Ramsey theory, that of determining the Ramsey number of bounded-degree graphs and that of estimating the induced Ramsey number for a graph with a given number of vertices. The Ramsey number r(H) of a graph H is the least positive integer N such that every two-coloring of the edges of the complete graph KNK_N contains a monochromatic copy of H. A famous result of Chv\'atal, R\"{o}dl, Szemer\'edi and Trotter states that there exists a constant c(\Delta) such that r(H) \leq c(\Delta) n for every graph H with n vertices and maximum degree \Delta. The important open question is to determine the constant c(\Delta). The best results, both due to Graham, R\"{o}dl and Ruci\'nski, state that there are constants c and c' such that 2^{c' \Delta} \leq c(\Delta) \leq 2^{c \Delta \log^2 \Delta}. We improve this upper bound, showing that there is a constant c for which c(\Delta) \leq 2^{c \Delta \log \Delta}. The induced Ramsey number r_{ind}(H) of a graph H is the least positive integer N for which there exists a graph G on N vertices such that every two-coloring of the edges of G contains an induced monochromatic copy of H. Erd\H{o}s conjectured the existence of a constant c such that, for any graph H on n vertices, r_{ind}(H) \leq 2^{c n}. We move a step closer to proving this conjecture, showing that r_{ind} (H) \leq 2^{c n \log n}. This improves upon an earlier result of Kohayakawa, Pr\"{o}mel and R\"{o}dl by a factor of \log n in the exponent.Comment: 18 page

    The critical window for the classical Ramsey-Tur\'an problem

    Get PDF
    The first application of Szemer\'edi's powerful regularity method was the following celebrated Ramsey-Tur\'an result proved by Szemer\'edi in 1972: any K_4-free graph on N vertices with independence number o(N) has at most (1/8 + o(1)) N^2 edges. Four years later, Bollob\'as and Erd\H{o}s gave a surprising geometric construction, utilizing the isoperimetric inequality for the high dimensional sphere, of a K_4-free graph on N vertices with independence number o(N) and (1/8 - o(1)) N^2 edges. Starting with Bollob\'as and Erd\H{o}s in 1976, several problems have been asked on estimating the minimum possible independence number in the critical window, when the number of edges is about N^2 / 8. These problems have received considerable attention and remained one of the main open problems in this area. In this paper, we give nearly best-possible bounds, solving the various open problems concerning this critical window.Comment: 34 page

    Discovery of an Unbound Hyper-Velocity Star in the Milky Way Halo

    Full text link
    We have discovered a star, SDSS J090745.0+024507, leaving the Galaxy with a heliocentric radial velocity of +853+-12 km/s, the largest velocity ever observed in the Milky Way halo. The star is either a hot blue horizontal branch star or a B9 main sequence star with a heliocentric distance ~55 kpc. Corrected for the solar reflex motion and to the local standard of rest, the Galactic rest-frame velocity is +709 km/s. Because its radial velocity vector points 173.8 deg from the Galactic center, we suggest that this star is the first example of a hyper-velocity star ejected from the Galactic center as predicted by Hills and later discussed by Yu & Tremaine. The star has [Fe/H]~0, consistent with a Galactic center origin, and a travel time of <80 Myr from the Galactic center, consistent with its stellar lifetime. If the star is indeed traveling from the Galactic center, it should have a proper motion of 0.3 mas/yr observable with GAIA. Identifying additional hyper-velocity stars throughout the halo will constrain the production rate history of hyper-velocity stars at the Galactic center.Comment: 4 pages, submitted to ApJ Letter

    Hard X-ray standing-wave photoemission insights into the structure of an epitaxial Fe/MgO multilayer magnetic tunnel junction

    Get PDF
    The Fe/MgO magnetic tunnel junction is a classic spintronic system, with current importance technologically and interest for future innovation. The key magnetic properties are linked directly to the structure of hard-to-access buried interfaces, and the Fe and MgO components near the surface are unstable when exposed to air, making a deeper probing, nondestructive, in-situ measurement ideal for this system. We have thus applied hard X-ray photoemission spectroscopy (HXPS) and standing-wave (SW) HXPS in the few kilo-electron-volt energy range to probe the structure of an epitaxially grown MgO/Fe superlattice. The superlattice consists of 9 repeats of MgO grown on Fe by magnetron sputtering on an MgO(001) substrate, with a protective Al2O3 capping layer. We determine through SW-HXPS that 8 of the 9 repeats are similar and ordered, with a period of 33 ± 4 Å, with the minor presence of FeO at the interfaces and a significantly distorted top bilayer with ca. 3 times the oxidation of the lower layers at the top MgO/Fe interface. There is evidence of asymmetrical oxidation on the top and bottom of the Fe layers. We find agreement with dark-field scanning transmission electron microscope (STEM) and X-ray reflectivity measurements. Through the STEM measurements, we confirm an overall epitaxial stack with dislocations and warping at the interfaces of ca. 5 Å. We also note a distinct difference in the top bilayer, especially MgO, with possible Fe inclusions. We thus demonstrate that SW-HXPS can be used to probe deep buried interfaces of novel magnetic devices with few-angstrom precision

    K\"{a}hler moduli inflation and WMAP7

    Full text link
    Inflationary potentials are investigated for specific models in type IIB string theory via flux compactification. As concrete models, we investigate several cases where the internal spaces are weighted projective spaces. The models we consider have two, three, or four K\"{a}hler moduli. The K\"{a}hler moduli play a role of inflaton fields and we consider the cases where only one of the moduli behaves as the inflaton field. For the cases with more than two moduli, we choose the diagonal basis for the expression of the Calabi-Yau volume, which can be written down as a function of four-cycle. With the combination of multiple moduli, we can express the multi-dimensional problem as an effective one-dimensional problem. In the large volume scenario, the potentials of these three models turn out to be of the same type. By taking the specific limit of the relation between the moduli and the volume, the potentials are reduced to simpler ones which induce inflation. As a toy model we first consider the simple potential. We calculate the slow roll parameters ϵ\epsilon, η\eta and ξ\xi for each inflationary potential. Then, we check whether the potentials give reasonable spectral indices nsn_s and their running αs\alpha_s's by comparing with the recently released seven-year WMAP data. For both models, we see reasonable spectral indices for the number of e-folding 47<Ne<6147<N_e<61. Conversely, by inserting the observed seven-year WMAP data, we see that the potential of the toy model gives requisite number of e-folds while the potential of the K\"{a}hler moduli gives much smaller number of e-folding. Finally, we see that two models do not produce reasonable values of the running of the spectral index.Comment: 22 pages, 6 figure

    Rapid, widespread transduction of the murine myocardium using self-complementary Adeno-associated virus

    Get PDF
    Adeno-associated virus (AAV) has shown great promise as a gene transfer vector. However, the incubation time needed to attain significant levels of gene expression is often too long for some clinical applications. Self-complementary AAV (scAAV) enters the cell as double stranded DNA, eliminating the step of second-strand synthesis, proven to be the rate-limiting step for gene expression of single-stranded AAV (ssAAV). The aim of this study was to compare the efficiency of these two types of AAV vectors in the murine myocardium. Four day old CD-1 mice were injected with either of the two AAV constructs, both expressing GFP and packaged into the AAV1 capsid. The animals were held for 4, 6, 11 or 21 days, after which they were euthanized and their hearts were excised. Serial sections of the myocardial tissue were used for real-time PCR quantification of AAV genome copies and for confocal microscopy. Although we observed similar numbers of AAV genomes at each of the different time points present in both the scAAV and the ssAAV infected hearts, microscopic analysis showed expression of GFP as early as 4 days in animals injected with the scAAV, while little or no expression was observed with the ssAAV constructs until day 11. AAV transduction of murine myocardium is therefore significantly enhanced using scAAV constructs

    Dark Matter and LHC: What is the Connection?

    Get PDF
    We review what can (and cannot) be learned if dark matter is detected in one or more experiments, emphasizing the importance of combining LHC data with direct, astrophysical and cosmological probes of dark matter. We briefly review the conventional picture of a thermally produced WIMP relic density and its connection with theories of electroweak symmetry breaking. We then discuss both experimental and theoretical reasons why one might generically expect this picture to fail. If this is the case, we argue that a combined effort bringing together all types of data -- combined with explicitly constructed theoretical models -- will be the only way to achieve a complete understanding of the dark matter in our universe and become confident that any candidate actually provides the relic density.Comment: 25 pages, 2 figures, Invited review for Modern Physics Letters
    corecore