3,911 research outputs found
Systematics of String Loop Corrections in Type IIB Calabi-Yau Flux Compactifications
We study the behaviour of the string loop corrections to the N=1 4D
supergravity Kaehler potential that occur in flux compactifications of IIB
string theory on general Calabi-Yau three-folds. We give a low energy
interpretation for the conjecture of Berg, Haack and Pajer for the form of the
loop corrections to the Kaehler potential. We check the consistency of this
interpretation in several examples. We show that for arbitrary Calabi-Yaus, the
leading contribution of these corrections to the scalar potential is always
vanishing, giving an "extended no-scale structure". This result holds as long
as the corrections are homogeneous functions of degree -2 in the 2-cycle
volumes. We use the Coleman-Weinberg potential to motivate this cancellation
from the viewpoint of low-energy field theory. Finally we give a simple formula
for the 1-loop correction to the scalar potential in terms of the tree-level
Kaehler metric and the correction to the Kaehler potential. We illustrate our
ideas with several examples. A companion paper will use these results in the
study of Kaehler moduli stabilisation.Comment: 34 pages and 3 figures; typos corrected and references adde
Scanning the Landscape of Flux Compactifications: Vacuum Structure and Soft Supersymmetry Breaking
We scan the landscape of flux compactifications for the Calabi-Yau manifold
with two K\" ahler moduli by varying the value of
the flux superpotential over a large range of values. We do not include
uplift terms. We find a rich phase structure of AdS and dS vacua. Starting with
we reproduce the exponentially large volume scenario, but as
is reduced new classes of minima appear. One of them corresponds to the
supersymmetric KKLT vacuum while the other is a new, deeper non-supersymmetric
minimum. We study how the bare cosmological constant and the soft supersymmetry
breaking parameters for matter on D7 branes depend on , for these classes
of minima. We discuss potential applications of our results.Comment: draft format remove
Utilization of community resources in the intermediate grades.
Thesis (Ed.M.)--Boston Universit
Towards Realistic String Vacua From Branes At Singularities
We report on progress towards constructing string models incorporating both
realistic D-brane matter content and moduli stabilisation with dynamical
low-scale supersymmetry breaking. The general framework is that of local
D-brane models embedded into the LARGE volume approach to moduli stabilisation.
We review quiver theories on del Pezzo () singularities including
both D3 and D7 branes. We provide supersymmetric examples with three
quark/lepton families and the gauge symmetries of the Standard, Left-Right
Symmetric, Pati-Salam and Trinification models, without unwanted chiral
exotics. We describe how the singularity structure leads to family symmetries
governing the Yukawa couplings which may give mass hierarchies among the
different generations. We outline how these models can be embedded into compact
Calabi-Yau compactifications with LARGE volume moduli stabilisation, and state
the minimal conditions for this to be possible. We study the general structure
of soft supersymmetry breaking. At the singularity all leading order
contributions to the soft terms (both gravity- and anomaly-mediation) vanish.
We enumerate subleading contributions and estimate their magnitude. We also
describe model-independent physical implications of this scenario. These
include the masses of anomalous and non-anomalous U(1)'s and the generic
existence of a new hyperweak force under which leptons and/or quarks could be
charged. We propose that such a gauge boson could be responsible for the ghost
muon anomaly recently found at the Tevatron's CDF detector.Comment: 40 pages, 10 figure
Constraints on LVS Compactifications of IIB String Theory
We argue that once all theoretical and phenomenological constraints are
imposed on the different versions of the Large Volume Scenario (LVS)
compactifications of type IIB string theory, one particular version is favored.
This is essentially a sequestered one in which the soft terms are generated by
Weyl anomaly and RG running effects. We also show that arguments questioning
sequestering in LVS models are not relevant in this case.Comment: 14 pages, additional discussion of D7 brane case and mSUGRA,
reference adde
Natural Quintessence in String Theory
We introduce a natural model of quintessence in string theory where the light
rolling scalar is radiatively stable and couples to Standard Model matter with
weaker-than- Planckian strength. The model is embedded in an anisotropic type
IIB compactification with two exponentially large extra dimensions and
TeV-scale gravity. The bulk turns out to be nearly supersymmetric since the
scale of the gravitino mass is of the order of the observed value of the
cosmological constant. The quintessence field is a modulus parameterising the
size of an internal four-cycle which naturally develops a potential of the
order (gravitino mass)^4, leading to a small dark energy scale without tunings.
The mass of the quintessence field is also radiatively stable since it is
protected by supersymmetry in the bulk. Moreover, this light scalar couples to
ordinary matter via its mixing with the volume mode. Due to the fact that the
quintessence field is a flat direction at leading order, this mixing is very
small, resulting in a suppressed coupling to Standard Model particles which
avoids stringent fifth-force constraints. On the other hand, if dark matter is
realised in terms of Kaluza-Klein states, unsuppressed couplings between dark
energy and dark matter can emerge, leading to a scenario of coupled
quintessence within string theory. We study the dynamics of quintessence in our
set-up, showing that its main features make it compatible with observations.Comment: 26 page
- …