9 research outputs found

    Comparison of genetic diversities in native and alien populations of hoary mustard (Hirschfeldia incana [L.] Lagreze-Fossat)

    Full text link
    Increased selfing and inbreeding and, consequently, depauperate genetic diversities are commonly expected for alien colonies. We compared RAPDs data for native (southern Europe) and alien (British Isles) populations of hoary mustard (Hirschfeldia incana). This species is normally out-breeding, but it is capable of self- fertilization. Contrary to the common expectations, genetic diversities in native and alien populations were similar, without any strong evidence of decreased levels of genetic diversities in alien populations. A variety of factors may have contributed to this observation, including high variation in founding groups, founders originating from multiple H. incana source populations, and high rates of past and/or current gene flow. A review of other studies showed that this pattern of similar genetic diversities in native and alien populations was not unusual but has been regularly observed in other invasive plant species

    Patterning of Antibodies Using Flexographic Printing

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Antibodies were patterned onto flexible plastic films using the flexographic printing process. An ink formulation was developed using high molecular weight polyvinyl alcohol in carbonate–bicarbonate buffer. In order to aid both antibody adhesion and the quality of definition in the printed features, a nitrocellulose coating was developed that was capable of being discretely patterned, thus increasing the signal-to-noise ratio of an antibody array. Printing antibody features such as dots, squares, text, and fine lines were reproduced effectively. Furthermore, this process could be easily adapted for printing of other biological materials, including, but not limited to, enzymes, DNA, proteins, aptamers, and cells

    High-level expression and epitope localization of the major outer membrane protein of Chlamydia trachomatis serovar L1

    No full text
    Fragments of the gene encoding the major outer membrane porin protein (MOMP) of Chlamydia trachomatis serovar L1 were ligated into the pUC plasmid vectors to give a series of overlapping recombinants expressing MOMP from the lac promoter. Induction of this promoter with IPTG leads to high-level expression of the recombinant porin protein. Electron microscopy shows the presence of insoluble inclusions within the Escherichia coli host cells. Probing the expressed MOMP fragments with a set of monoclonal antibodies permitted localization of the four binding sites (epitopes) of primary-sequence-dependent monoclonal antibodies that exhibit genus-, species-, subspecies- and type (serovar)-specific reactivities

    HIT-COVID, a global database tracking public health interventions to COVID-19

    No full text
    The COVID-19 pandemic has sparked unprecedented public health and social measures (PHSM) by national and local governments, including border restrictions, school closures, mandatory facemask use and stay at home orders. Quantifying the effectiveness of these interventions in reducing disease transmission is key to rational policy making in response to the current and future pandemics. In order to estimate the effectiveness of these interventions, detailed descriptions of their timelines, scale and scope are needed. The Health Intervention Tracking for COVID-19 (HIT-COVID) is a curated and standardized global database that catalogues the implementation and relaxation of COVID-19 related PHSM. With a team of over 200 volunteer contributors, we assembled policy timelines for a range of key PHSM aimed at reducing COVID-19 risk for the national and first administrative levels (e.g. provinces and states) globally, including details such as the degree of implementation and targeted populations. We continue to maintain and adapt this database to the changing COVID-19 landscape so it can serve as a resource for researchers and policymakers alike
    corecore