25 research outputs found
A sub-Doppler resolution double resonance molecular beam infrared spectrometer operating at chemically relevant energies (~2 eV)
A molecular beam spectrometer capable of achieving sub-Doppler resolution at 2 eV (~18 000 cm^â1) of vibrational excitation is described and its performance demonstrated using the CH stretch chromophore of HCN. Two high finesse resonant power-buildup cavities are used to excite the molecules using a sequential double resonance technique. A v = 0-->2 transition is first saturated using a 1.5 ”m color center laser, whereupon a fraction of the molecules is further excited to the v = 6 level using an amplitude modulated Ti:Al2O3 laser. The energy absorbed by the molecules is detected downstream of both excitation points by a cryogenically cooled bolometer using phase sensitive detection. A resolution of approximately 15 MHz (i.e., three parts in 10^8) is demonstrated by recording a rotational line in the v = 6 manifold of HCN. Scan speeds of up to several cm^â1/h were obtained, with signal-to-noise ratios in excess of 100. The high signal-to-noise ratio and a dynamic range of 6Ă10^4 means that future experiments to study statistical intramolecular vibrational energy redistribution in small molecules and unimolecular isomerizations can be attempted. We would also like to point out that, with improved metrology in laser wavelengths, this instrument can also be used to provide improved secondary frequency standards based upon the rovibrational spectra of molecules
Rovibrational spectroscopy of the v = 6 manifold in 12C2H2 and 13C2H2
We recorded rovibrational spectra of the 006+ level of 12C2H2 and the 2131 11â1 level of 13C2H2 in the ground electronic state using a two-photon sequential double resonance technique with a resolution of 15 MHz. Owing to the g/u symmetry of acetylene, the levels that we observe are inaccessible from the ground state by single photon techniques, and observation of these levels is reported here for the first time. Upper state rotational constants were derived from whole band fits of the observed lines, and compare favorably with expected values. Both spectra exhibit signs of local perturbations, and a density of states analysis leads us to believe that we are observing couplings to the full density of vibrational states one would expect from acetylene in this energy region. Despite the high resolution of our spectrometer, and the high excitation energy, no evidence for acetylene hydrogen permutation exchange isomerization (which is predicted to proceed through the vinylidene minimum on the potential) has been observed, implying that the rate of exchange isomerization is more than four orders-of-magnitude below the rate predicted by RRKM (Rice, Ramsperger, Kassel, and Marcus) theory
A quantitative theory-versus-experiment comparison for the intense laser dissociation of H2+
A detailed theory-versus-experiment comparison is worked out for H
intense laser dissociation, based on angularly resolved photodissociation
spectra recently recorded in H.Figger's group. As opposite to other
experimental setups, it is an electric discharge (and not an optical
excitation) that prepares the molecular ion, with the advantage for the
theoretical approach, to neglect without lost of accuracy, the otherwise
important ionization-dissociation competition. Abel transformation relates the
dissociation probability starting from a single ro-vibrational state, to the
probability of observing a hydrogen atom at a given pixel of the detector
plate. Some statistics on initial ro-vibrational distributions, together with a
spatial averaging over laser focus area, lead to photofragments kinetic
spectra, with well separated peaks attributed to single vibrational levels. An
excellent theory-versus-experiment agreement is reached not only for the
kinetic spectra, but also for the angular distributions of fragments
originating from two different vibrational levels resulting into more or less
alignment. Some characteristic features can be interpreted in terms of basic
mechanisms such as bond softening or vibrational trapping.Comment: submitted to PRA on 21.05.200
A superfluid hydrodynamic model for the enhanced moments of inertia of molecules in liquid 4He
We present a superfluid hydrodynamic model for the increase in moment of
inertia, , of molecules rotating in liquid He. The static
inhomogeneous He density around each molecule (calculated using the Orsay-Paris
liquid He density functional) is assumed to adiabatically follow the
rotation of the molecule. We find that the values created by the
viscousless and irrotational flow are in good agreement with the observed
increases for several molecules [ OCS, (HCN), HCCCN, and HCCCH ]. For
HCN and HCCH, our model substantially overestimates . This is likely
to result from a (partial) breakdown of the adiabatic following approximation.Comment: 4 pages, 1 eps figure, corrected version of published paper. Erratum
has been submitted for change
Energetics and Possible Formation and Decay Mechanisms of Vortices in Helium Nanodroplets
The energy and angular momentum of both straight and curved vortex states of
a helium nanodroplet are examined as a function of droplet size. For droplets
in the size range of many experiments, it is found that during the pickup of
heavy solutes, a significant fraction of events deposit sufficient energy and
angular momentum to form a straight vortex line. Curved vortex lines exist down
to nearly zero angular momentum and energy, and thus could in principle form in
almost any collision. Further, the coalescence of smaller droplets during the
cooling by expansion could also deposit sufficient angular momentum to form
vortex lines. Despite their high energy, most vortices are predicted to be
stable at the final temperature (0.38 K) of helium nanodroplets due to lack of
decay channels that conserve both energy and angular momentum.Comment: 10 pages, 8 figures, RevTex 4, submitted to Phys. Rev.
Quantum dynamics of molecules in 4He nano-droplets: Microscopic Superfluidity
High resolution spectroscopy of doped molecules in 4He nano-droplets and
clusters gives a signature of superfluidity in microscopic system, termed as
microscopic superfluidity. Ro-vibrational spectrum of 4HeN-M clusters is
studied with the help of some important observations, revealed from experiments
(viz., localised and orderly arrangement of 4He atoms, although, being free to
move in the order of their locations; individual 4He atoms can not be tagged as
normal/ superfluid, etc.) and other factors (e.g., consideration that the 4He
atoms which happen to fall in the plane of rotation of a molecule, render a
equipotential ring and thus, do not take part in rotation; etc.) which effect
the rotational and vibrational spectrum of the system. This helps us in
successfully explaining the experimental findings which state that the
rotational spectrum of clusters have sharp peaks (indicating that the molecule
rotates like a free rotor) and moment of inertia and vibrational frequency
shift have a non-trivial dependence on N
Quantum Rotation of HCN and DCN in Helium-4
We present calculations of rotational absorption spectra of the molecules HCN
and DCN in superfluid helium-4, using a combination of the Diffusion Monte
Carlo method for ground state properties and an analytic many-body method
(Correlated Basis Function theory) for the excited states. Our results agree
with the experimentally determined effective moment of inertia which has been
obtained from the spectral transition. The correlated basis function
analysis shows that, unlike heavy rotors such as OCS, the J=2 and higher
rotational excitations of HCN and DCN have high enough energy to strongly
couple to rotons, leading to large shifts of the lines and accordingly to
anomalous large spectroscopic distortion constants, to the emergence of
roton-maxon bands, and to secondary peaks in the absorption spectra for J=2 and
J=3.Comment: accepted by Phys. Rev. B; changes: included referee suggestions,
removed typos, added 10 ref