18 research outputs found

    Striatopallidal dysfunction underlies repetitive behavior in Shank3-deficient model of autism

    Get PDF
    The postsynaptic scaffolding protein SH3 and multiple ankyrin repeat domains 3 (SHANK3) is critical for the development and function of glutamatergic synapses. Disruption of the SHANK3-encoding gene has been strongly implicated as a monogenic cause of autism, and Shank3 mutant mice show repetitive grooming and social interaction deficits. Although basal ganglia dysfunction has been proposed to underlie repetitive behaviors, few studies have provided direct evidence to support this notion and the exact cellular mechanisms remain largely unknown. Here, we utilized the Shank3B mutant mouse model of autism to investigate how Shank3 mutation may differentially affect striatonigral (direct pathway) and striatopallidal (indirect pathway) medium spiny neurons (MSNs) and its relevance to repetitive grooming behavior in Shank3B mutant mice. We found that Shank3 deletion preferentially affects synapses onto striatopallidal MSNs. Striatopallidal MSNs showed profound defects, including alterations in synaptic transmission, synaptic plasticity, and spine density. Importantly, the repetitive grooming behavior was rescued by selectively enhancing the striatopallidal MSN activity via a Gq-coupled human M3 muscarinic receptor (hM3Dq), a type of designer receptors exclusively activated by designer drugs (DREADD). Our findings directly demonstrate the existence of distinct changes between 2 striatal pathways in a mouse model of autism and indicate that the indirect striatal pathway disruption might play a causative role in repetitive behavior of Shank3B mutant mice.National Institute of Mental Health (U.S.) (Grant 5R01MH097104

    Effect of Heterointerface on NO2 Sensing Properties of In-Situ Formed TiO2 QDs-Decorated NiO Nanosheets

    No full text
    In this work, TiO2 QDs-modified NiO nanosheets were employed to improve the room temperature NO2 sensing properties of NiO. The gas sensing studies showed that the response of nanocomposites with the optimal ratio to 60 ppm NO2 was nearly 10 times larger than that of bare NiO, exhibiting a potential application in gas sensing. Considering the commonly reported immature mechanism that the effective charge transfer between two phases contributes to an enhanced sensitivity, the QDs sensitization mechanism was further detailed by designing a series of contrast experiments. First, the important role of the QDs size effect was revealed by comparing the little enhanced sensitivity of TiO2 particle-modified NiO with the largely enhanced sensitivity of TiO2 QDs-NiO. Second, and more importantly, direct evidence of the heterointerface charge transfer efficiency was detailed by the extracted interface bond (Ti-O-Ni) using XPS peak fitting. This work can thus provide guidelines to design more QDs-modified nanocomposites with higher sensitivity for practical applications

    CO2 Absorption Mechanism by Diamino Protic Ionic Liquids (DPILs) Containing Azolide Anions

    No full text
    Protic ionic liquids have been regarded as promising materials to capture CO2, because they can be easily synthesized with an attractive capacity. In this work, we studied the CO2 absorption mechanism by protic ionic liquids (ILs) composed of diamino protic cations and azolide anions. Results of 1H nuclear magnetic resonance (NMR), 13C NMR, 2-D NMR and fourier-transform infrared (FTIR) spectroscopy tests indicated that CO2 reacted with the cations rather than with the anions. The possible reaction pathway between CO2 and azolide-based protic ILs is proposed, in which CO2 reacts with the primary amine group generated from the deprotonation of the cation by the azolide anion

    PI Film Laser Micro-Cutting for Quantitative Manufacturing of Contact Spacer in Flexible Tactile Sensor

    No full text
    The contact spacer is the core component of flexible tactile sensors, and the performance of this sensor can be adjusted by adjusting contact spacer micro-hole size. At present, the contact spacer was mainly prepared by non-quantifiable processing technology (electrospinning, etc.), which directly leads to unstable performance of tactile sensors. In this paper, ultrathin polyimide (PI) contact spacer was fabricated using nanosecond ultraviolet (UV) laser. The quality evaluation system of laser micro-cutting was established based on roundness, diameter and heat affected zone (HAZ) of the micro-hole. Taking a three factors, five levels orthogonal experiment, the optimum laser cutting process was obtained (pulse repetition frequency 190 kHz, cutting speed 40 mm/s, and RNC 3). With the optimal process parameters, the minimum diameter was 24.3 ± 2.3 μm, and the minimum HAZ was 1.8 ± 1.1 μm. By analyzing the interaction process between nanosecond UV laser and PI film, the heating-carbonization mechanism was determined, and the influence of process parameters on the quality of micro-hole was discussed in detail in combination with this mechanism. It provides a new approach for the quantitative industrial fabrication of contact spacers in tactile sensors

    Lightweight Chain-Typed Magnetic Fe<sub>3</sub>O<sub>4</sub>@rGO Composites with Enhanced Microwave-Absorption Properties

    No full text
    A lightweight microwave-absorbing material with a strong electromagnetic-absorption capability of practical significance in the field of electromagnetic compatibility was obtained by adjusting the ratio of Fe3O4 and rGO. A nanoparticle material with a chain-typed structure consisting of a combination of Fe3O4 and rGO was produced by a hydrothermal method under an applied magnetic field. The electromagnetic loss property of the Fe3O4@rGO composites is studied in the frequency range from 2 to 18 GHz. In addition, the reflection loss and the mechanism of microwave absorption are explored. By changing the amounts of rGO, the electromagnetic loss of the Fe3O4@rGO composites can be effectively regulated, which obtain better reflection loss. The minimum reflection loss of the Fe3O4@rGO composites is −49.4 dB at 16.2 GHz only with a thickness of 1.75 mm. Thus, the Fe3O4@rGO composites have an extremely thin thickness and a strong electromagnetic wave absorption capacity, which is a candidate for the development of lightweight magnetic absorbing materials

    The Influence of Hydrogen Bond Donors on the CO<sub>2</sub> Absorption Mechanism by the Bio-Phenol-Based Deep Eutectic Solvents

    No full text
    Recently, deep eutectic solvents (DESs), a new type of solvent, have been studied widely for CO2 capture. In this work, the anion-functionalized deep eutectic solvents composed of phenol-based ionic liquids (ILs) and hydrogen bond donors (HBDs) ethylene glycol (EG) or 4-methylimidazole (4CH3-Im) were synthesized for CO2 capture. The phenol-based ILs used in this study were prepared from bio-derived phenols carvacrol (Car) and thymol (Thy). The CO2 absorption capacities of the DESs were determined. The absorption mechanisms by the DESs were also studied using nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), and mass spectroscopy. Interestingly, the results indicated that CO2 reacted with both the phenolic anions and EG, generating the phenol-based carbonates and the EG-based carbonates, when CO2 interacted with the DESs formed by the ILs and EG. However, CO2 only reacted with the phenolic anions when the DESs formed by the ILs and 4CH3-Im. The results indicated that the HBDs impacted greatly on the CO2 absorption mechanism, suggesting the mechanism can be tuned by changing the HBDs, and the different reaction pathways may be due to the steric hinderance differences of the functional groups of the HBDs

    Effects of Ambient Temperature on Nanosecond Laser Micro-Drilling of Polydimethylsiloxane (PDMS)

    No full text
    In this research, effects of ambient temperature (−100 °C–200 °C) on nanosecond laser micro-drilling of polydimethylsiloxane (PDMS) was investigated by simulation and experiment. A thermo-mechanical coupled model was established, and it was indicated that the top and bottom diameter of the micro-hole decreased with the decrease of the ambient temperature, and the micro-hole taper increased with the decrease of the ambient temperature. The simulation results showed a good agreement with the experiment results in micro-hole geometry; the maximum prediction errors of the top micro-hole diameter, the bottom micro-hole diameter and micro-hole taper were 2.785%, 6.306% and 9.688%, respectively. The diameter of the heat-affected zone decreased with the decrease of the ambient temperature. The circumferential wrinkles were controlled by radial compressive stress. As the ambient temperature increased from 25 °C to 200 °C, the radial compressive stress gradually decreased, which led to the circumferential wrinkles gradually evolving in the radial direction. This work provides a new idea and method based on ambient temperature control for nanosecond laser processing of PDMS, which provides exciting possibilities for a wider range of engineering applications of PDMS

    Temperature Field-Assisted Ultraviolet Nanosecond Pulse Laser Processing of Polyethylene Terephthalate (PET) Film

    No full text
    Understanding the mechanism of and how to improve the laser processing of polymer films have been important issues since the advent of the procedure. Due to the important role of a photothermal mechanism in the laser ablation of polymer films, especially in transparent polymer films, it is both important and effective to adjust the evolution of heat and temperature in time and space during laser processing by simply adjusting the ambient environment so as to improve and understand the mechanism of this procedure. In this work, studies on the pyrolysis of PET film and on temperature field-assisted ultraviolet nanosecond (UV-ns) pulse laser processing of polyethylene terephthalate (PET) film were performed to investigate the photothermal ablation mechanism and the effects of temperature on laser processing. The results showed that the UV-ns laser processing of PET film was dominated by the photothermal process, in which PET polymer chains decomposed, melted, recomposed and reacted with the ambient gases. The ambient temperature changed the heat transfer and temperature distribution in the laser processing. Low ambient temperature reduced the thermal effect and an increase in ambient temperature improved its efficiency (kerf width: 39.63 μm at −25 °C; 48.30 μm at 0 °C; 45.81 μm at 25 °C; 100.70 μm at 100 °C) but exacerbated the thermal effect

    Temperature Field-Assisted Ultraviolet Nanosecond Pulse Laser Processing of Polyethylene Terephthalate (PET) Film

    No full text
    Understanding the mechanism of and how to improve the laser processing of polymer films have been important issues since the advent of the procedure. Due to the important role of a photothermal mechanism in the laser ablation of polymer films, especially in transparent polymer films, it is both important and effective to adjust the evolution of heat and temperature in time and space during laser processing by simply adjusting the ambient environment so as to improve and understand the mechanism of this procedure. In this work, studies on the pyrolysis of PET film and on temperature field-assisted ultraviolet nanosecond (UV-ns) pulse laser processing of polyethylene terephthalate (PET) film were performed to investigate the photothermal ablation mechanism and the effects of temperature on laser processing. The results showed that the UV-ns laser processing of PET film was dominated by the photothermal process, in which PET polymer chains decomposed, melted, recomposed and reacted with the ambient gases. The ambient temperature changed the heat transfer and temperature distribution in the laser processing. Low ambient temperature reduced the thermal effect and an increase in ambient temperature improved its efficiency (kerf width: 39.63 μm at −25 °C; 48.30 μm at 0 °C; 45.81 μm at 25 °C; 100.70 μm at 100 °C) but exacerbated the thermal effect
    corecore