30 research outputs found

    Holistic Strategies Lead to Enhanced Efficiency and Stability of Hybrid Chemical Vapor Deposition Based Perovskite Solar Cells and Modules

    Get PDF
    Hybrid chemical vapor deposition (HCVD) is a promising method for the up-scalable fabrication of perovskite solar cells/modules (PSCs/PSMs). However, the efficiency of the HCVD-based perovskite solar cells still lags behind the solution-processed PSCs/PSMs. In this work, the oxygen loss of the electron transport layer of SnO2 in the HCVD process and its negative impact on solar cell device performance are revealed. As the counter-measure, potassium sulfamate (H2KNO3S) is introduced as the passivation layer to both mitigate the oxygen loss issue of SnO2 and passivate the uncoordinated Pb2+ in the perovskite film. In parallel, N-methylpyrrolidone (NMP) is used as the solvent to dissolve PbI2 by forming the intermediate phase of PbI2•NMP, which can greatly lower the energy barrier for perovskite nucleation in the HCVD process. The perovskite seed is employed to further modulate the kinetics of perovskite crystal growth and improve the grain size. The resultant solar cells yield a champion power conversion efficiency (PCE) of 21.98% (0.09 cm2) with a stable output performance of 21.15%, and the PCEs of the mini-modules are 16.16% (22.4 cm2, stable output performance of 14.72%) and 12.12% (91.8 cm2). Furthermore, the unencapsulated small area device shows an outstanding operational stability with a T80 lifetime exceeding 4000 h.journal articl

    Constructing Heterostructure through Bidentate Coordination toward Operationally Stable Inverted Perovskite Solar Cells

    Get PDF
    It has been reported that one of the influencing factors leading to stability issues in iodine-containing perovskite solar cells is the iodine loss from the perovskite layer. Herein, bidentate coordination is used with undercoordinated I− of the perovskite surface to construct the stable perovskite-based heterostructure. This strong halogen bonding effectively inhibits interfacial migration of I− into functional layers such as C60 and Ag. Moreover, passivation of the undercoordinated I− suppresses the release of I2 and further delays the formation of voids at the perovskite surface. The resulting inverted perovskite solar cell exhibits a power conversion efficiency of 22.59% and the unencapsulated device maintains 96.15% of its initial value after continuous operation for 500 h under illumination.journal articl

    Graphene‐Like Conjugated Molecule as Hole‐Selective Contact for Operationally Stable Inverted Perovskite Solar Cells and Modules

    Get PDF
    Further enhancing the operational lifetime of inverted-structure perovskite solar cells (PSCs) is crucial for their commercialization, and the design of hole-selective contacts at the illumination side plays a key role in operational stability. In this work, the self-anchoring benzo[rst]pentaphene (SA-BPP) is developed as a new type of hole-selective contact toward long-term operationally stable inverted PSCs. The SA-BPP molecule with a graphene-like conjugated structure shows a higher photostability and mobility than that of the frequently-used triphenylamine and carbazole-based hole-selective molecules. Besides, the anchoring groups of SA-BPP promote the formation of a large-scale uniform hole contact on ITO substrate and efficiently passivate the perovskite absorbers. Benefiting from these merits, the champion efficiencies of 22.03% for the small-sized cells and 17.08% for 5 × 5 cm2 solar modules on an aperture area of 22.4 cm2 are achieved based on this SA-BPP contact. Also, the SA-BPP-based device exhibits promising operational stability, with an efficiency retention of 87.4% after 2000 h continuous operation at the maximum power point under simulated 1-sun illumination, which indicates an estimated T80 lifetime of 3175 h. This novel design concept of hole-selective contacts provides a promising strategy for further improving the PSC stability.journal articl

    Elimination of light-induced degradation at the nickel oxide-perovskite heterojunction by aprotic sulfonium layers towards long-term operationally stable inverted perovskite solar cells

    Get PDF
    Nickel oxide (NiOx) is a promising hole-selective contact to produce efficient inverted p-i-n structured perovskite solar cells (PSCs) due to its high carrier mobility and high transparency. However, the light-induced degradation of the NiOx–perovskite heterojunction is the main factor limiting its long-term operational lifetime. In this study, we used the time-resolved mass spectrometry technique to clarify the degradation mechanism of the NiOx-formamidinium–methylammonium iodide perovskite (a common composition for high-performance PSCs) heterojunction under operational conditions, and observed that (1) oxidation of iodide and generation of free protons under 1-sun illumination, (2) formation of volatile hydrogen cyanide, methyliodide, and ammonia at elevated temperatures, and (3) a condensation reaction between the organic components under a high vapor pressure. To eliminate these multi-step photochemical reactions, we constructed an aprotic trimethylsulfonium bromide (TMSBr) buffer layer at the NiOx/perovskite interface, which enables excellent photo-thermal stability, a matched lattice parameter with the perovskite crystal, and robust trap-passivation ability. Inverted PSCs stabilized with the TMSBr buffer layer reached the maximum efficiency of 22.1% and retained 82.8% of the initial value after continuous operation for 2000 hours under AM1.5G light illumination, which translates into a T80 lifetime of 2310 hours that is among the highest operational lifetimes for NiOx-based PSCs

    Saliency-Driven Oil Tank Detection Based on Multidimensional Feature Vector Clustering for SAR Images

    No full text

    Multi-Omics Profiling Identifies Candidate Genes Controlling Seed Size in Peanut

    No full text
    Seed size is the major yield component and a key target trait that is selected during peanut breeding. However, the mechanisms that regulate peanut seed size are unknown. Two peanut mutants with bigger seed size were isolated in this study by 60Co treatment of a common peanut landrace, Huayu 22, and were designated as the “big seed” mutant lines (hybs). The length and weight of the seed in hybs were about 118% and 170% of those in wild-type (WT), respectively. We adopted a multi-omics approach to identify the genomic locus underlying the hybs mutants. We performed whole genome sequencing (WGS) of WT and hybs mutants and identified thousands of large-effect variants (SNPs and indels) that occurred in about four hundred genes in hybs mutants. Seeds from both WT and hybs lines were sampled 20 days after flowering (DAF) and were used for RNA-Seq analysis; the results revealed about one thousand highly differentially expressed genes (DEGs) in hybs compared to WT. Using a method that combined large-effect variants with DEGs, we identified 45 potential candidate genes that shared gene product mutations and expression level changes in hybs compared to WT. Among the genes, two candidate genes encoding cytochrome P450 superfamily protein and NAC transcription factors may be associated with the increased seed size in hybs. The present findings provide new information on the identification and functional research into candidate genes responsible for the seed size phenotype in peanut

    Mechanochemistry: An Efficient Way to Recycle Thermoset Polyurethanes

    No full text
    A recycling process of waste thermosetting polyurethane plastics was proposed based on the mechanochemical method, aiming at the three-dimensional network cross-linking structure of thermosetting polyurethane. Orthogonal experimental design was adopted to select three factors of crushing speed, crushing time, and feed amount to determine the best crushing parameters. Then, the waste polyurethane insulation boards were crushed and degraded by the mechanism of regenerative forming with the adjustable speed test machine. Accordingly, the recycled powder was obtained. Finally, nine kinds of polyurethane recycled composite plates were prepared by hot pressing process. The degradation effect of thermosetting polyurethane was analyzed by Fourier transform infrared spectroscopy, scanning electron microscope, and X-ray diffraction. Moreover, the mechanical properties and thermal insulation properties of recycled composite plates were tested and analyzed. The results show that the network cross-linking molecular structure of waste thermosetting polyurethane plastics is destroyed by the effect of mechanochemical action, and methyl and aldehyde groups are decomposed. Therefore, a recycled powder with strong reactivity and plasticity is generated, which improves the activity regeneration ability. After adding thermoplastic resin, the mechanical properties and formability of recycled composite plates are enhanced, with maximum tensile strength up to 9.913 MPa. Correspondingly, the thermal insulation performance of plates is reduced. However, the minimum thermal conductivity can also reach 0.056 W/m¡K. This study provides an effective method for the recycling of thermosetting polyurethane plastics

    Narrow-Band Violet-Light-Emitting Diodes Based on Stable Cesium Lead Chloride Perovskite Nanocrystals

    No full text
    CsPbCl3 nanocrystals are potential ultrapure emitters. But it is challenging to synthesize CsPbCl3 nanocrystals with sufficient stability, which impedes their application in light-emitting devices. In this work, we report a facile phosphoryl-chemistry-mediated synthesis approach to synthesizing stable CsPbCl3 nanocrystals, in which the phenylphosphonic dichloride (PhPOCl2) precursor is employed. In addition to the high reactivity of the P–Cl bond of PhPOCl2 for providing adequate Cl, the derived P=O with good proton affinity facilitates the formation of a distinct nanocrystal surface with the nonprotonated oleylamine (OLA) ligand. Accordingly, the L-type-ligand-capped CsPbCl3 nanocrystals exhibited not only bright luminance but also good stability that endured repeated purification up to 10 cycles. Based on the stable CsPbCl3 nanocrystals, we achieved violet LEDs with extremely narrow electroluminescence spectra (full width at half-maximum ≈ 10.6 nm)
    corecore