33 research outputs found

    Evolution of Ecological Security in the Tableland Region of the Chinese Loess Plateau Using a Remote-Sensing-Based Index

    Get PDF
    Maintaining optimal ecological security is a serious issue in the Chinese Loess Plateau (CLP). Remote sensing ecological indexes (RSEI) of three main tableland regions of the CLP were calculated based on spectral information provided by remote sensing imaging satellites between 2000 and 2018. We were able to use RSEI values to systematically evaluate the temporal and spatial variation in the regional ecological environment and determine the influential factors that mainly associated with these changes. The results showed that between 2000 and 2018, the ecological environment improved, remained stable, and deteriorated, respectively, in the Gansu, Shaanxi, and Shanxi tablelands. Regions with poor or fair RSEIs were concentrated around the main river basins, while regions with moderate RSEIs were associated with poor ecological conditions and poor areas. The significant spatiotemporal variation in RSEI indicates that the ecological system in this region is relatively fragile. We also observed that natural factors such as the temperature, potential evapotranspiration, and precipitation had the greatest influence on the overall ecological quality. The rapid increase in the regional population and human activity played an important role in the variation in the regional RSEI. This research will provide important information on controlling regional soil erosion and ecological restoration in the CLP

    Value of loop electrosurgical excision procedure conization and imaging for the diagnosis of papillary squamous cell carcinoma of the cervix

    Get PDF
    BackgroundLoop electrosurgical excision procedure (LEEP) conization and hysterectomy are performed for some patients with papillary squamous cell carcinoma (PSCC), whereas only hysterectomy is performed for others. We aimed to determine the optimal management for PSCC.MethodsPatients diagnosed with PSCC by colposcopy-directed biopsy between June 2008 and January 2020 who underwent LEEP conization and hysterectomy or only hysterectomy at our hospital were enrolled. Results of cervical cytology, high-risk human papillomavirus testing, transvaginal sonography, pelvic magnetic resonance imaging, LEEP, hysterectomy, and pathology testing of colposcopy-directed biopsy samples were analyzed.ResultsA total of 379 women were diagnosed with PSCC by colposcopy-directed biopsy; 174 underwent LEEP before hysterectomy and 205 underwent only hysterectomy. Patients underwent and did not undergo LEEP were aged 47 ± 11 years and 52 ± 11 years, respectively. Among women who underwent LEEP, the agreement between LEEP and hysterectomy pathology was 85.1%. For women who underwent only hysterectomy, the agreement between preoperative clinical staging and pathological staging after hysterectomy was 82.4%. For patients with preoperative imaging indicative of malignancy, the accuracy of LEEP for diagnosing and staging PSCC was 88.5%, whereas for the hysterectomy-only group, it was 86.2%. For patients without malignancy detected with imaging, the accuracy of LEEP for diagnosing and staging PSCC was 81.6%; however, for those who did not undergo LEEP, it was 70.0%.ConclusionFor women diagnosed with PSCC by colposcopy-directed biopsy, LEEP conization is necessary for an accurate diagnosis when imaging does not indicate cancer; however, LEEP is not necessary when imaging indicates cancer

    Hydrochemical Characteristics and the Relationship between Surface and Groundwater in a Typical ‘Mountain–Oasis’ Ecosystem in Central Asia

    No full text
    Water environment monitoring is an important way to optimize the allocation and sustainable utilization of regional water resources and is beneficial for ensuring the security of regional water resources. In order to explore hydrochemical distributions in a mountain–oasis ecosystem in Central Asia, surface water and groundwater samples from the Kaidu River basin were collected over four seasons. pH values, major ions, total dissolved solids (TDS) and stable isotopes were determined during the period from 2016 to 2017. The results showed: (1) that most water bodies in the study areas were mildly alkaline and that hydrochemical distributions showed significant seasonal and spatial variation; (2) that δD and δ18O in surface water and groundwater showed enrichment in summer and autumn and poverty in spring and winter, with higher δ18O values appearing in the oasis area and lower δ18O values appearing in the mountain area; (3) that most of the water bodies in the study areas were of HCO3−Ca2+ type, with the hydrochemical types of groundwater presenting obvious spatial inconsistency relative to surface water; (4) that rock weathering was the main factor controlling hydrochemical composition in the study areas and that human activities had an influence on the groundwater environment in the oasis area; (5) and that surface water–groundwater interactions also displayed spatial inconsistency, especially in summer. The interaction between river water and groundwater was more obvious in the traditional oasis area, especially in spring and summer. The results will be important for regional water resource management and sustainable water utilization

    Hydrochemical Characteristics and the Relationship between Surface and Groundwater in a Typical ‘Mountain–Oasis’ Ecosystem in Central Asia

    No full text
    Water environment monitoring is an important way to optimize the allocation and sustainable utilization of regional water resources and is beneficial for ensuring the security of regional water resources. In order to explore hydrochemical distributions in a mountain–oasis ecosystem in Central Asia, surface water and groundwater samples from the Kaidu River basin were collected over four seasons. pH values, major ions, total dissolved solids (TDS) and stable isotopes were determined during the period from 2016 to 2017. The results showed: (1) that most water bodies in the study areas were mildly alkaline and that hydrochemical distributions showed significant seasonal and spatial variation; (2) that δD and δ18O in surface water and groundwater showed enrichment in summer and autumn and poverty in spring and winter, with higher δ18O values appearing in the oasis area and lower δ18O values appearing in the mountain area; (3) that most of the water bodies in the study areas were of HCO3−Ca2+ type, with the hydrochemical types of groundwater presenting obvious spatial inconsistency relative to surface water; (4) that rock weathering was the main factor controlling hydrochemical composition in the study areas and that human activities had an influence on the groundwater environment in the oasis area; (5) and that surface water–groundwater interactions also displayed spatial inconsistency, especially in summer. The interaction between river water and groundwater was more obvious in the traditional oasis area, especially in spring and summer. The results will be important for regional water resource management and sustainable water utilization

    Differences in Carbon Sequestration Ability of Diverse Tartary Buckwheat Genotypes in Barren Soil Caused by Microbial Action

    No full text
    Planting plants to increase soil carbon input has been widely used to achieve carbon neutrality goals. Tartary buckwheat not only has good barren tolerance but is also rich in nutrients and very suitable for planting in barren areas. However, the effects of different genotypes of Tartary buckwheat roots and rhizosphere microorganisms on soil carbon input are still unclear. In this study, ozone sterilization was used to distinguish the sources of soil organic acids and C-transforming enzymes, and the contribution of root and rhizosphere microorganisms to soil carbon storage during the growth period of two genotypes of tartary buckwheat was studied separately to screen suitable varieties. Through the analysis of the experimental results, the conclusions are as follows: (1) The roots of Diqing tartary buckwheat have stronger carbon sequestration ability in a barren environment than Heifeng, and the microorganisms in Diqing tartary buckwheat soil will also increase soil carbon input. Therefore, Diqing tartary buckwheat is more suitable for carbon sequestration than Heifeng tartary buckwheat in barren soil areas. (2) In the absence of microorganisms, the rhizosphere soil of tartary buckwheat can regulate the storage of soil organic carbon by secreting extracellular enzymes and organic acids. (3) The structural equation model showed that to promote carbon sequestration, Heifeng tartary buckwheat needed to inhibit microbial action when planted in the barren area of Loess Plateau, while Diqing tartary buckwheat needed to use microbial-promoting agents. Adaptive strategies should focus more on cultivar selection to retain carbon in soil and to assure the tolerance of fineness in the future

    Evolution of Ecological Security in the Tableland Region of the Chinese Loess Plateau Using a Remote-Sensing-Based Index

    No full text
    Maintaining optimal ecological security is a serious issue in the Chinese Loess Plateau (CLP). Remote sensing ecological indexes (RSEI) of three main tableland regions of the CLP were calculated based on spectral information provided by remote sensing imaging satellites between 2000 and 2018. We were able to use RSEI values to systematically evaluate the temporal and spatial variation in the regional ecological environment and determine the influential factors that mainly associated with these changes. The results showed that between 2000 and 2018, the ecological environment improved, remained stable, and deteriorated, respectively, in the Gansu, Shaanxi, and Shanxi tablelands. Regions with poor or fair RSEIs were concentrated around the main river basins, while regions with moderate RSEIs were associated with poor ecological conditions and poor areas. The significant spatiotemporal variation in RSEI indicates that the ecological system in this region is relatively fragile. We also observed that natural factors such as the temperature, potential evapotranspiration, and precipitation had the greatest influence on the overall ecological quality. The rapid increase in the regional population and human activity played an important role in the variation in the regional RSEI. This research will provide important information on controlling regional soil erosion and ecological restoration in the CLP

    Spatial and Temporal Variations of Potential Evapotranspiration in the Loess Plateau of China During 1960–2017

    No full text
    Potential evapotranspiration (ET0) is an integral component of the hydrological cycle and the global energy balance, and its long-term variation is of much concern in climate change studies. The Loess Plateau is an important area of agricultural civilization and water resources research. This study analyzed the spatial and temporal evolution processes and influential parameters of ET0 at 70 stations in different topographical areas of the Chinese Loess Plateau (CLP). Using the Mann–Kendall trend, Cross wavelet transform, and the ArcGIS platform, the ET0 of each station was quantified using the Penman–Monteith equation, and the effects of climatic factors on ET0 were assessed by analyzing the correlation coefficients and contribution rates of the climatic factors. The results showed that: (1) the overall trend of the ET0 in different terrains of the Loess Plateau is consistent, however, the ET0 values differ; the hill region (HR) has the highest ET0, followed by the valley region (VR), and the mountain region (MR) has the lowest, and ET0 changes differ between seasons. (2) Spatial distribution characteristics of multiyear mean ET0 in the study are as follows: the ET0 values in mountain and hilly areas are decreasing from west to east, and the higher mean annual ET0 value in the VR is mainly concentrated in the eastern CLP. (3) In the past 58 years, the annual mean and the seasonal ET0 of the region showed increasing trends, however, differences in different terrains were obvious. (4) ET0 has significant correlations with El Niño–Southern Oscillation (ENSO), Pacific–North American teleconnection (PNA), and Atlantic Multidecadal Oscillation (AMO). The resonance period of ET0 and ENSO was 3–6 a, mainly in 1976–1985. The mean coherence phase angle was close to 360°, indicating that ET0 lags behind PNA by approximately 2–6 a; ET0 has a very strong positive correlation with AMO. (5) Relative humidity (RH) is the main influencing factor of ET0 change in the Loess Plateau. Temperature (T) variation has the highest contribution rate (42%) to the regional ET0 variation in the entire CLP. We should pay more attention to the variation of evaporation under future climate change, especially temperature change

    FGFRL1 Promotes Ovarian Cancer Progression by Crosstalk with Hedgehog Signaling

    No full text
    Fibroblast growth factor receptor-like-1 (FGFRL1) has been identified as the fifth fibroblast growth factor receptor. So far, little is known about its biological functions, particularly in cancer development. Here, for the first time, we demonstrated the roles of FGFRL1 in ovarian carcinoma (OC). An array and existing databases were used to investigate the expression profile of FGFRL1 and the relationship between FGFRL1 expression and clinicopathological parameters. FGFRL1 was significantly upregulated in OC patients, and high FGFRL1 expression was correlated with poor prognosis. In vitro cell proliferation, apoptosis and migration assays, and in vivo subcutaneous xenograft tumor models were used to determine the role of FGFRL1. Loss of function of FGFRL1 significantly influenced cell proliferation, apoptosis, and migration of OC cells in vitro and tumor growth in vivo. Chromatin immunoprecipitation PCR analysis and microarray hybridization were performed to uncover the mechanism. FGFRL1 expression could be induced by hypoxia through hypoxia-inducible factor 1α, which directly binds to the promoter elements of FGFRL1. FGFRL1 promoted tumor progression by crosstalk with Hedgehog (Hh) signaling. Taken together, FGFRL1 is a potential predictor and plays an important role in tumor growth and Hh signaling which could serve as potential therapeutic targets for the treatment of OC
    corecore