59 research outputs found

    Numerical Simulation of Non-Newtonian Core Annular Flow through Rectangle Return Bends

    Get PDF
    The volume of fluid (VOF) model together with the continuum surface stress (CSS) model is proposed to simulate the core annular of non-Newtonian oil and water flow through the rectangle return bends (∏-bends). A comprehensive investigation is conducted to generate the profiles of volume fraction, pressure and velocity. The influences of oil properties, flow direction, and bend geometric parameters on hydrodynamic of nonNewtonian oil and water core annular flow in ∏-bends are discussed. Through computational simulations the proper bend geometric parameters were identified, these results are useful for designing and optimizing the pipefitting system

    Effect of Pigments on Quality Characteristics of Pork Sausages

    No full text
    The objective of this investigation was to evaluate the possibility of substituting Amaranthus pigments for nitrates in the of manufacture pork sausage. Five treatments of pork sausages (5% fat) with two levels of sodium nitrite (0 and 0.015%), or three levels (0.1%, 0.2% and 0.3%) of pigments extracted from red Amaranthus were produced. The addition of Amaranthus pigments resulted in the significant increase of a* values, sensory color, flavor and overall acceptance scores, but the significant reduction of b* values, TBA values and VBN values (p<0.05). Based mainly on the results of overall acceptance during 29 d storage, it could be concluded that Amaranthus pigments showed a potential as nitrite alternative for pork sausage manufacture

    Finite Element Simulation of the Machining Process of Boiling Structures in a Novel Radial Heat Sink for High-Power LEDs

    No full text
    A phase change heat sink has higher heat transfer efficiency compared to a traditional metal solid heat sink, and is thus more preferred for the heat dissipation of high-power light-emitting diodes (LEDs) with very high heat flux. The boiling structure at the evaporation surface is the biggest factor that affects heat sink resistance. It is necessary to investigate the plastic deformation law during the machining process of boiling structures. In this study, a novel phase change radial heat sink was developed for high-power LED heat dissipation. First, a working principle and a fabrication process for the heat sink were introduced. Subsequently, to achieve an excellent heat dissipation performance, the machining process of boiling structures was numerically simulated and investigated. To be specific, plastic deformation generated during the formation was analyzed, and key parameters related to the morphology of the boiling structures were discussed including feeding angles and machining depths. Moreover, the finite element (FE) simulation results were compared with those of experiments. Last but not least, the heat transfer performance of the fabricated heat sink was tested. Results showed that the developed heat sink was well suited for a high-power LED application.</jats:p
    corecore