523 research outputs found

    Exploring Bosonic Mediator of Interaction at BESIII

    Full text link
    We present a comprehensive investigation on the possibility of the search for new force mediator XX boson in e+e−e^+e^- collision and J/ψJ/\psi decay at the BESIII experiment. The typical interactions of XX boson coupling to leptons and quarks are explored. The production and decay properties of this XX particle, the product/decay chains e+e−→Xγ→e+e−γe^+e^-\to X\gamma \to e^+e^-\gamma and J/ψ→Xγ→μ+μ−γJ/\psi \to X\gamma\to\mu^+\mu^-\gamma, and exclusion limits on the reduced coupling strength parameters as functions of XX boson mass are presented. With the data set of tens of fb−1 e+e−^{-1}~e^+e^- or 1010 J/ψ10^{10}~J/\psi, we find that the exclusion limits on the coupling strength parameters fall in the range of 10−3∼10−410^{-3}\sim10^{-4}, depending on mXm_X assuming the decay width 10 eV<ΓX<<\Gamma_X<100 eV reasonably, for various hypotheses in the literature. According to our estimation, the search for new force mediator XX boson in both e+e−e^+e^- collision and J/ψJ/\psi decay are accessible in nowadays BESIII experiment.Comment: To appear in EPJC; 26 pages, 13 figures; Fig.s (5, 6, 9, 11, 12, 13) are reploted and their discussion are updated; three paragraphs, two equations and 1 table are added; two errors are correcte

    Two-Loop integrals for CP-even heavy quarkonium production and decays: Elliptic Sectors

    Full text link
    By employing the differential equations, we compute analytically the elliptic sectors of two-loop master integrals appearing in the NNLO QCD corrections to CP-even heavy quarkonium exclusive production and decays, which turns out to be the last and toughest part in the relevant calculation. The integrals are found can be expressed as Goncharov polylogarithms and iterative integrals over elliptic functions. The master integrals may be applied to some other NNLO QCD calculations about heavy quarkonium exclusive production, like γ∗γ→QQˉ\gamma^*\gamma\rightarrow Q\bar{Q}, e+e−→γ+QQˉe^+e^-\rightarrow \gamma+ Q\bar{Q},~and~H/Z0→γ+QQˉH/Z^0\rightarrow \gamma+ Q\bar{Q}, heavy quarkonium exclusive decays, and also the CP-even heavy quarkonium inclusive production and decays.Comment: 23 pages, 3 figures, more discussions and references adde

    Metagenomic and metaproteomic analyses of microbial amino acid metabolism during Cantonese soy sauce fermentation

    Get PDF
    Cantonese soy sauce is an important type of traditional Chinese brewed soy sauce that was developed in southern China, mainly in Guangdong. Due to the long fermentation period and complex microbiota in Cantonese soy sauce, there are few reports on the microbial metaproteomics of Cantonese soy sauce. In this study, integrative metagenomic and metaproteomic analyzes were used to identify the changes in the dominant microbiota and amino acid synthesis-related enzymes and metabolism during Cantonese soy sauce fermentation. Metagenomic analysis revealed that Tetragenococcus halophilus, Weissella confusa, Weissella paramesenteroides, Enterobacter hormaechei, and Aspergillus oryzae were the dominant microbiota. Using the Top 15 dominant microbiota identified by metagenomics as the database, LTQ Orbitrap Velos Pro ETD mass spectrometry was used to obtain metaproteomic information about the microbes in the soy sauce, and the results indicated that the active enzymes involved in the metabolism of amino acids were secreted by microorganisms such as A. oryzae, T. halophilus, and Zygosaccharomyces rouxii. During the Cantonese soy sauce fermentation process. Among them, early fermentation (0-15d) was dominated by A. oryzae and T. halophilus, mid-term fermentation (60-90d) was dominated by Z. rouxii, A. oryzae, and T. halophilus, and late fermentation (90-120d) was dominated by A. oryzae, Z. rouxii, and T. halophilus. Kyoto Encyclopedia of Genes and Genomes analysis revealed that the main enzymes involved in the metabolism of umami amino acids were aspartate aminotransferase, citrate synthase, aconitase, and isocitrate dehydrogenase, which were produced by Z. rouxii and A. oryzae during early fermentation (0–15 d) and the middle fermentation stage (60–90 d). This study constructed a regulatory network of enzymes potentially involved in the metabolism of flavor amino acids, which provided a theoretical basis for studying the amino acid metabolism of Cantonese soy sauce

    Activation and Monitoring of mtDNA Damage in Cancer Cells via the "proton-Triggered" Decomposition of an Ultrathin Nanosheet

    Get PDF
    Mitochondrial DNA (mtDNA) damage is a very important molecular event, which has significant effects on living organisms. Therefore, a particularly important challenge for biomaterials research is to develop functionalized nanoparticles that can activate and monitor mtDNA damage and instigate cancer cell apoptosis, and as such eliminate the negative effects on living organisms. Toward that goal, with this research, we have developed a hydroxyapatite ultrathin nanosheet (HAP-PDCns) - a high Ca2+ content biomaterial. HAP-PDCns undergoes proton-triggered decomposition after entering cancer cells via clathrin-mediated endocytosis, and then, it selectively concentrates in the charged mitochondrial membrane. This kind of proton-triggered decomposition phenomenon facilitates mtDNA damage by causing instantaneous local calcium overload in the mitochondria of cancer cells, and inhibits tumor growth. Importantly, at the same time, a real-time green-red-green fluorescence change occurs that correlates with the degree of mtDNA deterioration because of the changes in the highest occupied molecular orbital-lowest unoccupied molecular orbital energy gaps during this process. Significantly, the decomposition and the fluorescence changes cannot be triggered in normal cells. Thus, HAP-PDCns can selectively induce apoptosis and the death of a cancer cell by facilitating mtDNA damage, but does not affect normal cells. In addition, HAP-PDCns can simultaneously monitor the degree of mtDNA damage. We anticipate that this design strategy can be generalized to develop other functionalized biomaterials that can be used to instigate the positive effects of mtDNA damage on living organisms while eliminating any negative effects. </p
    • …
    corecore