5,602 research outputs found

    Differential Phase-contrast Interior Tomography

    Full text link
    Differential phase contrast interior tomography allows for reconstruction of a refractive index distribution over a region of interest (ROI) for visualization and analysis of internal structures inside a large biological specimen. In this imaging mode, x-ray beams target the ROI with a narrow beam aperture, offering more imaging flexibility at less ionizing radiation. Inspired by recently developed compressive sensing theory, in numerical analysis framework, we prove that exact interior reconstruction can be achieved on an ROI via the total variation minimization from truncated differential projection data through the ROI, assuming a piecewise constant distribution of the refractive index in the ROI. Then, we develop an iterative algorithm for the interior reconstruction and perform numerical simulation experiments to demonstrate the feasibility of our proposed approach

    A multi-tone sound absorber based on an array of shunted loudspeakers

    Full text link
    © 2018 by the authors. It has been demonstrated that a single shunted loudspeaker can be used as an effective low frequency sound absorber in a duct, but many shunted loudspeakers have to be used in practice for noise reduction or reverberation control in rooms, thus it is necessary to understand the performance of an array of shunted loudspeakers. In this paper, a model for the parallel shunted loudspeaker array for multi-tone sound absorption is proposed based on a modal solution, and then the acoustic properties of a shunted loudspeaker array under normal incidence are investigated using both the modal solution and the finite element method. It was found that each shunted loudspeaker can work almost independently where each unit resonates. Based on the interaction analysis, multi-tone absorbers in low frequency can be achieved by designing multiple shunted loudspeakers with different shunt circuits respectively. The simulation and experimental results show that the normal incidence sound absorption coefficient of the designed absorber has four absorption peaks with values of 0.42, 0.58, 0.80, and 0.84 around 100 Hz, 200 Hz, 300 Hz, and 400 Hz respectively

    Dual frequency sound absorption with an array of shunt loudspeakers.

    Full text link
    Transformer noise is dominated by low frequency components, which are hard to be controlled with traditional noise control approaches. The shunt loudspeaker consisting of a closed-box loudspeaker and a shunt circuit has been proposed as an effective sound absorber by storing and dissipating the electrical energy converted from the incident sound. In this paper, an array of shunt loudspeakers is proposed to control the 100 Hz and 200 Hz components of transformer noise. The prototype under tests has a thickness of 11.8 cm, which is only 1/28 of the wavelength of 100 Hz. The sound absorption performance of the array under random incidence is analyzed with the parallel impedance method, and the arrangement of array elements is optimized. The test results in a reverberation room show that the proposed array has sound absorption coefficients of 1.04 and 0.93 at 100 Hz and 200 Hz, respectively, which provides potential of applying this type of thin absorbers for low-frequency sound control

    Influence of substrate initial temperature on adhesion strength of ice on aluminum alloy

    Get PDF
    The present work investigates the influence of the initial temperature of a substrate on the ice adhesion strength by analyzing the freezing characteristics of water droplets adhered to the substrate. The ice adhesion strength on 6061 aluminum alloy was measured using a dedicated strength testing apparatus, and the freezing process of water droplets at different initial temperatures of the alloy surface was examined with a microscope. The results of the experiments show that the ice adhesion strength on the aluminum alloy surface at ambient temperature was twice as large as that measured on a colder surface (e.g., −5 °C). Combining the experimental results with the microscopic observation of the freezing process revealed that at high initial surface temperature (i.e. equal to 18 °C), the water droplets thoroughly spread on the aluminum alloy surface at high temperature, formed a larger contact area. In addition, the initial surface temperature would influence the type of crystallization. Moreover, the advantages and disadvantages of thermal de-icing approaches, widely used in engineering (especially in the high-speed rail and aerospace fields), were discussed

    Stability of Excited Dressed States with Spin-Orbit Coupling

    Full text link
    We study the decay behaviors of ultracold atoms in metastable states with spin-orbit coupling (SOC), and demonstrate that there are two SOC-induced decay mechanisms. One arises from the trapping potential and the other is due to interatomic collision. We present general schemes for calculating decay rates from these two mechanisms, and illustrate how the decay rates can be controlled by experimental parameters.We experimentally measure the decay rates over a broad parameter region, and the results agree well with theoretical calculations. This work provides an insight for both quantum simulation involving metastable dressed states and studies on few-body problems with SO coupling.Comment: 4.5 pages, 4 figures, the latest versio

    A Kolmogorov theorem for nearly-integrable Poisson systems with asymptotically decaying time-dependent perturbation

    Full text link
    The aim of this paper is to prove the Kolmogorov theorem of persistence of Diophantine flows for nearly-integrable Poisson systems associated to a real analytic Hamiltonian with aperiodic time dependence, provided that the perturbation is asymptotically vanishing. The paper is an extension of an analogous result by the same authors for canonical Hamiltonian systems; the flexibility of the Lie series method developed by A. Giorgilli et al., is profitably used in the present generalisation.Comment: 10 page

    On Metric Dimension of Functigraphs

    Full text link
    The \emph{metric dimension} of a graph GG, denoted by dim(G)\dim(G), is the minimum number of vertices such that each vertex is uniquely determined by its distances to the chosen vertices. Let G1G_1 and G2G_2 be disjoint copies of a graph GG and let f:V(G1)V(G2)f: V(G_1) \rightarrow V(G_2) be a function. Then a \emph{functigraph} C(G,f)=(V,E)C(G, f)=(V, E) has the vertex set V=V(G1)V(G2)V=V(G_1) \cup V(G_2) and the edge set E=E(G1)E(G2){uvv=f(u)}E=E(G_1) \cup E(G_2) \cup \{uv \mid v=f(u)\}. We study how metric dimension behaves in passing from GG to C(G,f)C(G,f) by first showing that 2dim(C(G,f))2n32 \le \dim(C(G, f)) \le 2n-3, if GG is a connected graph of order n3n \ge 3 and ff is any function. We further investigate the metric dimension of functigraphs on complete graphs and on cycles.Comment: 10 pages, 7 figure

    Myeloperoxidase As a Multifaceted Target for Cardiovascular Protection

    Get PDF
    SIGNIFICANCE: Myeloperoxidase (MPO) is a heme peroxidase that is primarily expressed by neutrophils. It has the capacity to generate several reactive species, essential for its inherent antimicrobial activity and innate host defense. Dysregulated MPO release however, can lead to tissue damage, as seen in several diseases. Increased MPO levels in circulation is therefore, widely associated with conditions of increased oxidative stress and inflammation. Recent Advances: Several studies have shown a strong correlation between MPO and cardiovascular disease (CVD), whereby elevated levels of circulating MPO are linked to poor prognosis with increased risk of CVD-related mortality. Accordingly, circulating MPO is considered a 'high-risk' biomarker for patients with acute coronary syndrome, atherosclerosis, heart failure, hypertension and stroke, thereby implicating MPO as a multifaceted target for cardiovascular protection. Consistently, recent studies that target MPO in animal models of CVD have demonstrated favorable outcomes with regard to disease progression. CRITICAL ISSUES: Although most of these studies have established a critical link between circulating MPO and worsening cardiac outcomes, the mechanisms by which MPO exerts its detrimental effects in CVD remain unclear. FUTURE DIRECTIONS: Elucidating the mechanisms by which elevated MPO leads to poor prognosis and conversely, investigating the beneficial effects of therapeutic MPO inhibition on alleviating disease phenotype, will facilitate future MPO-targeted clinical trials for improving CVD-related outcomes

    A New Approach for Analytic Amplitude Calculations

    Get PDF
    We present a method for symbolic calculation of Feynman amplitudes for processes involving both massless and massive fermions. With this approach fermion strings in a specific amplitude can be easily evaluated and expressed as basic Lorentz scalars. The new approach renders the symbolic calculation of some complicated physical processes more feasible and easier, especially with the assistance of algebra manipulating codes for computer.Comment: LaTex, no figure, to appear in PR
    corecore