158 research outputs found
Line of Dirac monopoles embedded in a Bose-Einstein condensate
The gauge field of a uniform line of magnetic monopoles is created using a
single Laguerre-Gauss laser mode and a gradient in the physical magnetic field.
We study the effect of these monopoles on a Bose condensed atomic gas, whose
vortex structure transforms when more than six monopoles are trapped within the
cloud. Finally, we study this transition with the collective modes
Dynamical instability of a spin spiral in an interacting Fermi gas as a probe of the Stoner transition
We propose an experiment to probe ferromagnetic phenomena in an ultracold
Fermi gas, while alleviating the sensitivity to three-body loss and competing
many-body instabilities. The system is initialized in a small pitch spin
spiral, which becomes unstable in the presence of repulsive interactions. To
linear order the exponentially growing collective modes exhibit critical
slowing down close to the Stoner transition point. Also, to this order, the
dynamics are identical on the paramagnetic and ferromagnetic sides of the
transition. However, we show that scattering off the exponentially growing
modes qualitatively alters the collective mode structure. The critical slowing
down is eliminated and in its place a new unstable branch develops at large
wave vectors. Furthermore, long-wavelength instabilities are quenched on the
paramagnetic side of the transition. We study the experimental observation of
the instabilities, specifically addressing the trapping geometry and how
phase-contrast imaging will reveal the emerging domain structure. These probes
of the dynamical phenomena could allow experiments to detect the transition
point and distinguish between the paramagnetic and ferromagnetic regimes
A repulsive atomic gas in a harmonic trap on the border of itinerant ferromagnetism
Alongside superfluidity, itinerant (Stoner) ferromagnetism remains one of the
most well-characterized phases of correlated Fermi systems. A recent experiment
has reported the first evidence for novel phase behavior on the repulsive side
of the Feshbach resonance in a two-component ultracold Fermi gas. By adapting
recent theoretical studies to the atomic trap geometry, we show that an
adiabatic ferromagnetic transition would take place at a weaker interaction
strength than is observed in experiment. This discrepancy motivates a simple
non-equilibrium theory that takes account of the dynamics of magnetic defects
and three-body losses. The formalism developed displays good quantitative
agreement with experiment.Comment: 4 pages, 2 figure
- …