898 research outputs found

    ^25Mg NMR study of the MgB_2 superconductor

    Full text link
    ^25Mg NMR spectra and nuclear spin-lattice relaxation time, T_1, have been measured in polycrystalline ^25MgB_2 with a superconducting transition temperature T_c = 39.0 K in zero magnetic field. From the first order and second order quadrupole perturbed NMR spectrum a quadrupole coupling frequency nu_Q = 222(1.5) kHz is obtained. T_1T = 1090(50) sK and Knight shift K_c = 242(4) ppm are temperature independent in the normal conducting phase. The ^25Mg Korringa ratio equals to 0.95 which is very close to the ideal value of unity for s-electrons. The comparison of the experimental nu_Q, T_1T, and K_c with the corresponding values obtained by LDA calculations shows an excellent agreement for all three quantities.Comment: 4 pages including 4 eps-figures, revtex

    Synthesis, crystal structure and chemical stability of the superconductor FeSe_{1-x}

    Full text link
    We report on a comparative study of the crystal structure and the magnetic properties of FeSe1-x (x= 0.00 - 0.15) superconducting samples by neutron powder diffraction and magnetization measurements. The samples were synthesized by two different methods: a 'low-temperature' one using powders as a starting material at T =700 C and a "high-temperature' method using solid pieces of Fe and Se at T= 1070 C. The effect of a starting (nominal) stoichiometry on the phase purity of the obtained samples, the superconducting transition temperature Tc, as well as the chemical instability of FeSe1-x at ambient conditions were investigated. It was found that in the Fe-Se system a stable phase exhibiting superconductivity at Tc~8K exists in a narrow range of selenium concentration (FeSe0.974(2)).Comment: 7 pages, 7 figures, 1 tabl

    Formation of single-phase disordered CsxFe2-ySe2 at high pressure

    Full text link
    A single-phase high pressure (HP) modification of CsxFe2-ySe2 was synthesized at 11.8 GPa at ambient temperature. Structurally this polymorph is similar to the minor low pressure (LP) superconducting phase, namely they both crystallize in a ThCr2Si2-type structure without ordering of the Fe vacancies within the Fe-deficient FeSe4 layers. The HP CsxFe2-ySe2 polymorph is found to be less crystalline and nearly twice as soft compared to the parent major and minor phases of CsxFe2-ySe2. It can be quenched to low pressures and is stable at least on the scale of weeks. At ambient pressure the HP polymorph of CsxFe2-ySe2 is expected to exhibit different superconducting properties compared to its LP minor phase (Tc = 27 K)

    Correlation between oxygen isotope effects on the transition temperature and the magnetic penetration depth in high-temperature superconductors close to optimal doping

    Full text link
    The oxygen-isotope (^{16}O/^{18}O) effect (OIE) on the in-plane magnetic penetration depth \lambda_{ab}(0) in optimally-doped YBa_2Cu_3O_{7-\delta} and La_{1.85}Sr_{0.15}CuO_4, and in slightly underdoped YBa_2Cu_4O_8 and Y_{0.8}Pr_{0.2}Ba_2Cu_3O_{7-\delta} was studied by means of muon-spin rotation. A substantial OIE on \lambda_{ab}(0) with an OIE exponent \beta_O=-d\ln\lambda_{ab}(0)/d\ln M_O\approx - 0.2 (M_O is the mass of the oxygen isotope), and a small OIE on the transition temperature T_c with an OIE exponent \alpha_O=-d\ln T_{c}/d \ln M_O\simeq0.02 to 0.1 were observed. The observation of a substantial isotope effect on \lambda_{ab}(0), even in cuprates where the OIE on T_c is small, indicates that lattice effects play an important role in cuprate HTS.Comment: 6 pages, 4 figure

    Negative Oxygen Isotope Effect on the Static Spin Stripe Order in La_(2-x)Ba_xCuO_4 (x = 1/8)

    Full text link
    Large negative oxygen-isotope (16O/18O) effects (OIE's) on the static spin-stripe ordering temperature T_so and the magnetic volume fraction V_m were observed in La_(2-x)Ba_xCuO_4 (x = 1/8) by means of muon spin rotation experiments. The corresponding OIE exponents were found to be alpha_(T_so) = -0.57(6) and alpha_(V_m) = -0.71(9), which are sign reversed to alpha_(T_c) = 0.46(6) measured for the superconducting transition temperature T_c. This indicates that the electron-lattice interaction is involved in the stripe formation and plays an important role in the competition between bulk superconductivity and static stripe order in the cuprates.Comment: 5 pages, 4 figure

    Ferroelectric charge order stabilized by antiferromagnetism in multiferroic LuFe2O4

    Full text link
    Neutron diffraction measurements on multiferroic LuFe2O4 show changes in the antiferromagnetic (AFM) structure characterized by wavevector q = (1/3 1/3 1/2) as a function of electric field cooling procedures. The increase of intensity from all magnetic domains and the decrease in the 2D magnetic order observed below the Neel temperature are indicative of increased ferroelectric charge order. The AFM order changes the dynamics of the CO state, and stabilizes it. It is determined that the increase in electric polarization observed at the magnetic ordering temperature is due to a transition from paramagnetic 2D charge order to AFM 3D charge order.Comment: 5 pages, 3 figure

    Spin-state transition in LaCoO3: direct neutron spectroscopic evidence of excited magnetic states

    Get PDF
    A gradual spin-state transition occurs in LaCoO3 around T~80-120 K, whose detailed nature remains controversial. We studied this transition by means of inelastic neutron scattering (INS), and found that with increasing temperature an excitation at ~0.6 meV appears, whose intensity increases with temperature, following the bulk magnetization. Within a model including crystal field interaction and spin-orbit coupling we interpret this excitation as originating from a transition between thermally excited states located about 120 K above the ground state. We further discuss the nature of the magnetic excited state in terms of intermediate-spin (IS, S=1) vs. high-spin (HS, S=2) states. Since the g-factor obtained from the field dependence of the INS is g~3, the second interpretation looks more plausible.Comment: 10 pages, 4 figure

    A Resonant soft x-ray powder diffraction study to determine the orbital ordering in A-site ordered SmBaMn2O6

    Full text link
    Soft X-ray resonant powder diffraction has been performed at the Mn L2,3 edges of A-site ordered SmBaMn2O6. The energy and polarization dependence of the (1/2 1/2 0) reflection provide direct evidence for a (x2-z2)/(y2-z2) type orbital ordering in contrast to the single layer manganite. The temperature dependence of the reflection indicates an orbital reorientation transition at 210 K, below which the charge and orbital ordered MnO2 sheets show AAAA type of stacking. The concurring reduction of the ferromagnetic super exchange correlations leads to further charge localization
    corecore