124 research outputs found

    The University Press Redux: Introduction

    Get PDF

    Antiferromagnetic magnons as highly squeezed Fock states underlying quantum correlations

    Full text link
    Employing the concept of two-mode squeezed states from quantum optics, we demonstrate a revealing physical picture for the antiferromagnetic ground state and excitations. Superimposed on a N{\'e}el ordered configuration, a spin-flip restricted to one of the sublattices is called a sublattice-magnon. We show that an antiferromagnetic spin-up magnon is comprised by a quantum superposition of states with n+1n+1 spin-up and nn spin-down sublattice-magnons, and is thus an enormous excitation despite its unit net spin. Consequently, its large sublattice-spin can amplify its coupling to other excitations. Employing von Neumann entropy as a measure, we show that the antiferromagnetic eigenmodes manifest a high degree of entanglement between the two sublattices, thereby establishing antiferromagnets as reservoirs for strong quantum correlations. Based on these novel insights, we outline strategies for exploiting the strong quantum character of antiferromagetic (squeezed-)magnons and give an intuitive explanation for recent experimental and theoretical findings in antiferromagnetic magnon spintronics

    Asymmetric magnetic bubble expansion under in-plane field in Pt/Co/Pt: effect of interface engineering

    Get PDF
    We analyse the impact of growth conditions on asymmetric magnetic bubble expansion under in-plane field in ultrathin Pt / Co / Pt films. Specifically, using sputter deposition we vary the Ar pressure during the growth of the top Pt layer. This induces a large change in the interfacial structure as evidenced by a factor three change in the effective perpendicular magnetic anisotropy. Strikingly, a discrepancy between the current theory for domain-wall propagation based on a simple domain-wall energy density and our experimental results is found. This calls for further theoretical development of domain-wall creep under in-plane fields and varying structural asymmetry.Comment: 16 pages, 3 figure

    Tuning magnetic chirality by dipolar interactions

    Get PDF
    Chiral magnetism has gained enormous interest in recent years because of the anticipated wealth of applications in nanoelectronics. The demonstrated stabilization of chiral magnetic domain walls and skyrmions has been attributed to the actively investigated Dzyaloshinskii-Moriya interaction. Recently, however, predictions were made that suggest dipolar interactions can also stabilize chiral domain walls and skyrmions, but direct experimental evidence has been lacking. Here we show that dipolar interactions can indeed stabilize chiral domain walls by directly imaging the magnetic domain walls using scanning electron microscopy with polarization analysis. We further show that the competition between the Dzyaloshinskii-Moriya and dipolar interactions can reverse the domain-wall chirality. Finally, we suggest that this competition can be tailored by a Ruderman-Kittel-Kasuya-Yosida interaction. Our work therefore reveals that dipolar interactions play a key role in the stabilization of chiral spin textures. This insight will open up new routes towards balancing interactions for the stabilization of chiral magnetism

    Chiral Spin Spirals at the Surface of the van der Waals Ferromagnet Fe3GeTe2

    Get PDF
    Topologically protected magnetic structures provide a robust platform for low power consumption devices for computation and data storage. Examples of these structures are skyrmions, chiral domain walls, and spin spirals. Here we use scanning electron microscopy with polarization analysis to unveil the presence of chiral counterclockwise N\'eel spin spirals at the surface of a bulk van der Waals ferromagnet Fe3_3GeTe2_2 (FGT), at zero magnetic field. These N\'eel spin spirals survive up to FGT's Curie temperature TC=220 KT_\mathrm{C}= 220 \mathrm{~K}, with little change in the periodicity p=300 nmp=300 \mathrm{~nm} of the spin spiral throughout the studied temperature range. The formation of a spin spiral showing counterclockwise rotation strongly suggests the presence of a positive Dzyaloshinskii-Moriya interaction in FGT, which provides the first steps towards the understanding of the magnetic structure of FGT. Our results additionally pave the way for chiral magnetism in van der Waals materials and their heterostructures

    Stabilizing chiral spin-structures via an alternating Dzyaloshinskii-Moriya interaction

    Get PDF
    The stabilization of chiral magnetic spin-structures in thin films is often attributed to the interfacial Dzyaloshinskii-Moriya interaction (DMI). Very recently, however, it has been reported that the chirality induced by the DMI can be affected by dipolar interactions. These dipolar fields tend to form N\'eel caps, which entails the formation of a clockwise chirality at the top of the film and a counterclockwise chirality at the bottom. Here, we show that engineering an alternating DMI that changes sign across the film thickness, together with the tendency to form N\'eel caps, leads to an enhanced stability of chiral spin-structures. Micromagnetic simulations for skyrmions demonstrate that this can increase the effective DMI in a prototypical [Pt/Co/Ir] multilayer system by at least \SI{0.6}{mJ.m^{-2}}. These gains are comparable to what has been achieved using additive DMI, but more flexible as we are not limited to a select set of material combinations. We also present experimental results: by measuring equilibrium domain widths we quantify the effective DMI in [Pt/Co/Ir] multilayer systems typically used for skyrmion stabilization. Upon introducing an alternating DMI we demonstrate changes in the effective DMI that agree with our simulations. Our results provide a route towards enhancing the stability of chiral spin-structures that does not rely on enlarging the chiral interactions.Comment: Includes supplementar

    Magnetic chirality controlled by the interlayer exchange interaction

    Get PDF
    Chiral magnetism, wherein there is a preferred sense of rotation of the magnetization, has become a key aspect for future spintronic applications. It determines the chiral nature of magnetic textures, such as skyrmions, domain walls or spin spirals, and a specific magnetic chirality is often required for spintronic applications. Current research focuses on identifying and controlling the interactions that define the magnetic chirality. The influence of the interfacial Dzyaloshinskii-Moriya interaction (iDMI) and, recently, the dipolar interactions have previously been reported. Here, we experimentally demonstrate that an indirect interlayer exchange interaction can be used as an additional tool to effectively manipulate the magnetic chirality. We image the chirality of magnetic domain walls in a coupled bilayer system using scanning electron microscopy with polarization analysis (SEMPA). Upon increasing the interlayer exchange coupling, we induce a transition of the magnetic chirality from clockwise rotating N\'eel walls to degenerate Bloch-N\'eel domain walls and we confirm our findings with micromagnetic simulations. In multi-layered systems relevant for skyrmion research a uniform magnetic chirality across the magnetic layers is often desired. Additional simulations show that this can be achieved for reduced iDMI values when exploiting the interlayer exchange interaction. This work opens up new ways to control and tailor the magnetic chirality by the interlayer exchange interaction.Comment: Ms was off by a factor

    Probing laser-induced spin-current generation in synthetic ferrimagnets using spin waves

    Get PDF
    Several rare-earth transition-metal ferrimagnetic systems exhibit all-optical magnetization switching upon excitation with a femtosecond laser pulse. Although this phenomenon is very promising for future optomagnetic data storage applications, the role of nonlocal spin transport in these systems is scarcely understood. Using Co/Gd and Co/Tb bilayers, we isolate the contribution of the rare-earth materials to the generated spin currents by using the precessional dynamics they excite in an adjacent ferromagnetic layer as a probe. By measuring terahertz (THz) standing spin-waves as well as GHz homogeneous precessional modes, we probe both the high- and low-frequency components of these spin currents. The low-frequency homogeneous mode indicates a significant contribution of Gd to the spin current but not from Tb, consistent with the difficulty in achieving all-optical switching in Tb-containing systems. Measurements on the THz frequency spin waves reveal the inability of the rare-earth generated spin currents to excite dynamics at the subpicosecond timescale. We present modeling efforts using the s-d model, which effectively reproduces our results and allows us to explain the behavior in terms of the temporal profile of the spin current

    Une nouvelle esp\ue8ce de Plusiocampa des grottes d\u27Alicante, Espagne (Insecta, Diplura)

    No full text
    Volume: 93Start Page: 971End Page: 97
    corecore