14 research outputs found

    Immunoproteomic analysis of a Chikungunya poxvirus-based vaccine reveals high HLA class II immunoprevalence

    Get PDF
    BACKGROUND: Efficient adaptive antiviral cellular and humoral immune responses require previous recognition of viral antigenic peptides bound to human leukocyte antigen (HLA) class I and II molecules, which are exposed on the surface of infected and antigen presenting cells, respectively. The HLA-restricted immune response to Chikungunya virus (CHIKV), a mosquito-borne Alphavirus of the Togaviridae family responsible for severe chronic polyarthralgia and polyarthritis, is largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this study, a high-throughput mass spectrometry analysis of complex HLA-bound peptide pools isolated from large amounts of human cells infected with a vaccinia virus (VACV) recombinant expressing CHIKV structural proteins was carried out. Twelve viral ligands from the CHIKV polyprotein naturally presented by different HLA-A, -B, and -C class I, and HLA-DR and -DP class II molecules were identified. CONCLUSIONS/SIGNIFICANCE: The immunoprevalence of the HLA class II but not the HLA class I-restricted cellular immune response against the CHIKV structural polyprotein was greater than that against the VACV vector itself. In addition, most of the CHIKV HLA class I and II ligands detected by mass spectrometry are not conserved compared to its closely related O'nyong-nyong virus. These findings have clear implications for analysis of both cytotoxic and helper immune responses against CHIKV as well as for the future studies focused in the exacerbated T helper response linked to chronic musculoskeletal disorders in CHIKV patients.This work was supported by the Spanish Ministry of Economy grants SAF2014-58052 and “Acción Estratégica en Salud” 2018 to DL, SAF-2013-45232-R and SAF-2017-88089-R to ME, and by Israel Science Foundation, grant No. 1435/16 to AA. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.S

    cDNA Immunization of Mice with Human Thyroglobulin Generates Both Humoral and T Cell Responses: A Novel Model of Thyroid Autoimmunity

    Get PDF
    Thyroglobulin (Tg) represents one of the largest known self-antigens involved in autoimmunity. Numerous studies have implicated it in triggering and perpetuating the autoimmune response in autoimmune thyroid diseases (AITD). Indeed, traditional models of autoimmune thyroid disease, experimental autoimmune thyroiditis (EAT), are generated by immunizing mice with thyroglobulin protein in conjunction with an adjuvant, or by high repeated doses of Tg alone, without adjuvant. These extant models are limited in their experimental flexibility, i.e. the ability to make modifications to the Tg used in immunizations. In this study, we have immunized mice with a plasmid cDNA encoding the full-length human Tg (hTG) protein, in order to generate a model of Hashimoto's thyroiditis which is closer to the human disease and does not require adjuvants to breakdown tolerance. Human thyroglobulin cDNA was injected and subsequently electroporated into skeletal muscle using a square wave generator. Following hTg cDNA immunizations, the mice developed both B and T cell responses to Tg, albeit with no evidence of lymphocytic infiltration of the thyroid. This novel model will afford investigators the means to test various hypotheses which were unavailable with the previous EAT models, specifically the effects of hTg sequence variations on the induction of thyroiditis

    Natural Spleen Cell Ligandome in Transporter Antigen Processing-Deficient Mice.

    Get PDF
    Peptides generated by proteases in the cytosol must be translocated to endoplasmic reticulum lumen by the transporter associated with antigen processing (TAP) prior to their assembly with major histocompatibility complex (MHC) class I molecules. Nonfunctional TAP complexes produce a drastic decrease of the MHC class I/peptide complexes presented on the cell surface. Previously, the cellular MHC class I ligandome from TAP-deficient cell lines was determined, but similar analysis from normal tissues remains incomplete. Using high-throughput mass spectrometry to analyze the MHC-bound peptide pools isolated from ex vivo spleen cells of TAP-deficient mice, we identified 210 TAP-independent ligands naturally presented by murine MHC class I molecules. This ligandome showed increased peptide lengths, presence of multiple nested set peptides, and low theoretical MHC binding affinity. The gene ontology enrichment analysis of parental proteins of this TAP-independent subligandome showed almost exclusively enrichment in tissue-specific biological processes related to the immune system as would be expected. Also, cellular components of the extracellular space (namely proteins outside the cell but still within the organism excluding the extracellular matrix) were specifically associated with TAP-independent antigen processing from these ex vivo mice cells. In addition, functional protein association network analysis revealed low protein-protein interactions between parental proteins from the TAP-independent ligandome. Finally, predominant endoproteolytic peptidase specificity for Leu/Phe residues in the P1 position of the scissile bond at both ligand termini was found for the ex vivo TAP-independent ligands. These data indicate that the TAP-independent ligandome from ex vivo cells derives from a more diverse collection of both endoprotease activities and parental proteins and where the cell origin and contribution of the extracellular environment are more relevant than in its equivalent cell lines.This work was supported by the Spanish Ministry of Economy grants SAF2014-58052 and “Acción Estratégica en Salud” MPY 388/18 to D.L., and by Israel Science Foundation, grant No. 1435/16 to A. A. The funding agencies had no role in the study design, data collection, analysis decision to publish, or preparation of the manuscript.S

    Proteomics Analysis Reveals That Structural Proteins of the Virion Core and Involved in Gene Expression Are the Main Source for HLA Class II Ligands in Vaccinia Virus-Infected Cells

    No full text
    Protective cellular and humoral immune responses require previous recognition of viral antigenic peptides complexed with human leukocyte antigen (HLA) class II molecules on the surface of the antigen presenting cells. The HLA class II-restricted immune response is important for the control and the clearance of poxvirus infection including vaccinia virus (VACV), the vaccine used in the worldwide eradication of smallpox. In this study, a mass spectrometry analysis was used to identify VACV ligands bound to HLA-DR and -DP class II molecules present on the surface of VACV-infected cells. Twenty-six naturally processed viral ligands among the tens of thousands of cell peptides bound to HLA class II proteins were identified. These viral ligands arose from 19 parental VACV proteins: A4, A5, A18, A35, A38, B5, B13, D1, D5, D7, D12, D13, E3, E8, H5, I2, I3, J2, and K2. The majority of these VACV proteins yielded one HLA ligand and were generated mainly, but not exclusively, by the classical HLA class II antigen processing pathway. Medium-sized and abundant proteins from the virion core and/or involved in the viral gene expression were the major source of VACV ligands bound to HLA-DR and -DP class II molecules. These findings will help to understand the effectiveness of current poxvirus-based vaccines and will be important in the design of new ones.This work was supported by the Spanish Ministry of Economy Grants SAF2014-58052 and “Acción Estratégica en Salud” to D.L., SAF-2013-45232-R and SAF-2017-88089-R to M.E., and by Israel Science Foundation, Grant No. 1435/16 to A.A. The funding agencies had no role in the study design, data collection, analysis decision to publish, or preparation of the manuscript.S
    corecore