7 research outputs found

    Characterization of Antibodies to Capsular Polysaccharide Antigens of Haemophilus influenzae Type b and Streptococcus pneumoniae in Human Immune Globulin Intravenous Preparations

    No full text
    The most common infections in primary immune deficiency disease (PIDD) patients involve encapsulated bacteria, mainly Haemophilus influenzae type b (Hib) and Streptococcus pneumoniae (pneumococcus). Thus, it is important to know the titers of Hib- and pneumococcus-specific antibodies that are present in immune globulin (Ig) intravenous (IGIV) preparations used to treat PIDD. In this study, seven IGIV preparations were tested by enzyme-linked immunosorbent assay and opsonophagocytic activity for antibody titers to the capsular polysaccharides of Hib and five pneumococcal serotypes. Differences in Hib- and pneumococcus-specific antibody titer were observed among various IGIV preparations, with some products having higher- or lower-than-average titers. Opsonic activity also varied among preparations. As expected, IgG2 was the most active subclass of both binding and opsonic activity except against pneumococcal serotype 6B where IgG3 was the most active. This study determines antibody titers against capsular polysaccharides of Hib and pneumococcus in seven IGIV products that have been shown to be effective in reducing infections in PIDD patients. As donor antibody levels and manufacturing methods continue to change, it may prove useful from a regulatory point of view to reassess IGIV products periodically, to ensure that products maintain antibody levels that are important for the health of IGIV recipients

    Multilaboratory Evaluation of a Viability Assay for Measurement of Opsonophagocytic Antibodies Specific to the Capsular Polysaccharides of Streptococcus pneumoniae

    No full text
    Opsonophagocytosis is a correlate of protection that measures the functional activity of vaccine-induced antibodies. A standardized opsonophagocytosis assay (OPA) should be used as part of the evaluation of current and future pneumococcal (Pnc) polysaccharide (Ps)-based vaccines. We enrolled five laboratories to evaluate a previously standardized viability OPA. Each laboratory was provided with a detailed OPA protocol, seven target Pnc strains (serotypes 4, 6B, 9V, 14, 18C, 19F, and 23F), two quality control sera and 12 paired sera (blinded) from adult donors who received one dose of the 23-valent Pnc Ps vaccine. Laboratories sent their results to the Centers for Disease Control and Prevention for analysis. Sera were tested in duplicate (single run), and the results were averaged to yield a single OPA titer (≥50% killing) for each serum sample. The percentage of sera within one or two dilutions of the calculated median OPA titer was determined for each laboratory and for each serotype. In general, laboratories were capable of detecting OPA titers within one or two dilutions of the median for at least 75 and 88%, respectively, of the sera tested. The level of agreement with the median OPA titers varied depending on the participating laboratory (overall agreement = 0.8 [99% confidence interval = 0.75 to 0.85]). All OPA median titers reported for quality control sera were within one dilution of the expected titer. We conclude that this OPA can be done in multiple laboratories with a high degree of interlaboratory reproducibility
    corecore