44 research outputs found
Prediction of Potential Antimigraine Activity Using Artificial Neural Networks
More than 10 million Americans, three quarters of them women, suffer some degree of recurrent migraine headaches. Feverfew [Tanacetum parthenium (L.) Schultz-Bip.) is a member of the Asteraceae family that is native to Europe. This plant is a perennial flowering aromatic plant common in gardens. It has been widely used as a self-medication of arthritis, fever, and migraine headaches for over 2000 years. Sesquiterpene lactones (SL) are the components responsible for the antimigraine activity of feverfew. In this research, the relationship between SL structural information and their biological activity was studied by using Gaussian 92 program in conjunction with artificial neural networks (ANNs).The molecular orbital parameters of SL were obtained by using Gaussian 92 program. A set of 39 SL molecules was divided into two groups, a training set containing 33 molecules and a testing set containing six molecules. An ANN was trained and tested by using training sets and testing sets on SL\u27s antimigraine activities. The results showed that ANNs successfully predicted the antimigraine activities of SL based on their different structural information
Use of quaternary ammonium compounds to remove salmonella contamination from meat products
A composition and method for removing and preventing Salmonella contamination of meat products, in particular poultry, is disclosed. The composition comprises an effective amount of a quaternary ammonium compound in an aqueous solution. The quaternary ammonium compound are selected from the group consisting of alkylpyridinium, tetra-alkylammonium, and alkylalicyclic ammonium salts. Preferably, the quaternary ammonium compounds are cetylpyridinium chloride and cetylpyridinium bromide. Mutagenicity studies are also disclosed
Broad spectrum prevention and removal of microbial contamination of food by quaternary ammonium compounds
A method of using quaternary ammonium compounds for inhibiting attachment of and removing a broad spectrum of foodborne microbial contamination from food products is described. The method uses quaternary ammonium compounds for inhibiting attachment of and removing microorganisms such as, Staphylococcus, Campylobacter, Arcobacter, Listeria, Aeromonas, Bacillus, Salmonella, non-toxin producing Escherichia, and pathogenic toxin-producing Escherichia such as O157:H7, fungi such as Aspergillus flavus and Penicillium chrysogenum, and parasites such as Entameba histolytica from a broad range of food. The foods that can be treated by this method are meat, seafood, vegetables, and fruit
Tocotrienol-Rich Fraction from Rice Bran Demonstrates Potent Radiation Protection Activity
The vitamin E analogs δ-tocotrienol (DT3) and γ-tocotrienol (GT3) have significant protective and mitigative capacity against the detrimental effects of ionizing radiation (IR). However, the expense of purification limits their potential use. This study examined the tocotrienol-rich fraction of rice bran (TRFRB) isolated from rice bran deodorizer distillate, a rice oil refinement waste product, to determine its protective effects against IR induced oxidative damage and H2O2. Several cell lines were treated with tocotrienols or TRFRB prior to or following exposure to H2O2 or IR. To determine the radioprotective capacity cells were analyzed for morphology, mitochondrial bioenergetics, clonogenic survival, glutathione oxidation, cell cycle, and migration rate. TRFRB displayed similar antioxidant activity compared to pure tocotrienols. Cells pretreated with TRFRB or DT3 exhibited preserved cell morphology and mitochondrial respiration when exposed to H2O2. Oxidized glutathione was decreased in TRFRB treated cells exposed to IR. TRFRB reversed mitochondrial uncoupling and protected cells migration rates following IR exposure. The protective antioxidant capacity of TRFRB treated cells against oxidative injury was similar to that of purified DT3. TRFRB effectively protects normal cells against IR induced injury suggesting that rice bran distillate may be an inexpensive and abundant alternate source
Concentrated, non-foaming solution of quaternary ammonium compounds and methods of use
A concentrated quaternary ammonium compound (QAC) solution with a concentration from greater than about 10% by weight and at least one solubility enhancing agent, such as an alcohol, is disclosed. A diluted QAC solution is used to contact food products to prevent microbial growth on the food products from a broad spectrum of foodborne microbial contamination. A method of contacting the food products with the dilute QAC for an application time of at least 0.1 second is disclosed. The foods that can be treated by this method are meat and meat products, seafood, vegetables, fruit, dairy products, pet foods and snacks, and any other food that can be treated and still retain its appearance and texture. One of the treatment methods is spraying and misting the QAC solutions on the food products for an application time of at least 0.1 second to prevent broad spectrum foodborne microbial contamination
Concentrated, non-foaming solution of quaternary ammonium compounds and methods of use
A concentrated quaternary ammonium compound (QAC) solution with a concentration greater than about 10% by weight and at least one solubility enhancing agent, such as an alcohol, is disclosed. A diluted QAC solution is useful on food products to prevent microbial growth on the food from a broad spectrum of foodborne microbial contamination. Also disclosed is a method of contacting food products with the dilute QAC for an application time of at least 0.1 second. Foods that can be treated by this method are meat and meat products, seafood, vegetables, fruit, dairy products, pet foods and snacks, and any other food that can be treated and still retain its appearance and texture. One of the treatment methods is spraying and misting the QAC solutions on the food products for an application time of at least 0.1 second to prevent broad spectrum foodborne microbial contamination
Concentrated, non-foaming solution of quaternary ammonium compounds and methods of use
A concentrated quaternary ammonium compound (QAC) solution with a concentration from greater than about 10% by weight and at least one solubility enhancing agent, such as an alcohol, is disclosed. A diluted QAC solution is used to contact food products to prevent microbial growth on the food products from a broad spectrum of foodborne microbial contamination. A method of contacting the food products with the dilute QAC for an application time of at least 0.1 second is disclosed. The foods that can be treated by this method are meat and meat products, seafood, vegetables, fruit, dairy products, pet foods and snacks, and any other food that can be treated and still retain its appearance and texture. One of the treatment methods is spraying and misting the QAC solutions on the food products for an application time of at least 0.1 second to prevent broad spectrum foodborne microbial contamination
Parthenolide induces rapid thiol oxidation that leads to ferroptosis in hepatocellular carcinoma cells
Hepatocellular carcinoma (HCC) is both a devastating and common disease. Every year in the United States, about 24,500 men and 10,000 women are diagnosed with HCC, and more than half of those diagnosed patients die from this disease. Thus far, conventional therapeutics have not been successful for patients with HCC due to various underlying comorbidities. Poor survival rate and high incidence of recurrence after therapy indicate that the differences between the redox environments of normal surrounding liver and HCC are valuable targets to improve treatment efficacy. Parthenolide (PTL) is a naturally found therapeutic with anti-cancer and anti-inflammatory properties. PTL can alter HCC’s antioxidant environment through thiol modifications leaving tumor cells sensitive to elevated reactive oxygen species (ROS). Investigating the link between altered thiol mechanism and increased sensitivity to iron-mediated lipid peroxidation will allow for improved treatment of HCC. HepG2 (human) and McARH7777 (rat) HCC cells treated with PTL with increasing concentrations decrease cell viability and clonogenic efficiency in vitro. PTL increases glutathione (GSH) oxidation rescued by the addition of a GSH precursor, N-acetylcysteine (NAC). In addition, this elevation in thiol oxidation results in an overall increase in mitochondrial dysfunction. To elucidate if cell death is through lipid peroxidation, using a lipid peroxidation sensor indicated PTL increases lipid oxidation levels after 6 h. Additionally, western blotting reveals glutathione peroxidase 4 (GPx4) protein levels decrease after treatment with PTL suggesting cells are incapable of preventing lipid peroxidation after exposure to PTL. An elevation in lipid peroxidation will lead to a form of cell death known as ferroptosis. To further establish ferroptosis as a critical mechanism of death for HCC in vitro, the addition of ferrostatin-1 combined with PTL demonstrates a partial recovery in a colony survival assay. This study reveals that PTL can induce tumor cell death through elevations in intracellular oxidation, leaving cells sensitive to ferroptosis
Mutant profilin1 transgenic mice recapitulate cardinal features of motor neuron disease
The recent identification of profilin1 mutations in 25 familial ALS cases has linked altered function of this cytoskeletonregulating protein to the pathogenesis of motor neuron disease. To investigate the pathological role of mutant profilin1 in motor neuron disease, we generated transgenic lines of mice expressing human profilin1 with a mutation at position 118 (hPFN1G118V). One of the mouse lines expressing high levels of mutant human PFN1 protein in the brain and spinal cord exhibited many key clinical and pathological features consistent with human ALS disease. These include loss of lower (ventral horn) and upper motor neurons (corticospinal motor neurons in layer V), mutant profilin1 aggregation, abnormally ubiquitinated proteins, reduced choline acetyltransferase (ChAT) enzyme expression, fragmented mitochondria, glial cell activation, muscle atrophy, weight loss, and reduced survival. Our investigations of actin dynamics and axonal integrity suggest that mutant PFN1 protein is associated with an abnormally low filamentous/globular (F/G)-actin ratio that may be the underlying cause of severe damage to ventral root axons resulting in a Wallerian-like degeneration. These observations indicate that our novel profilin1 mutant mouse line may provide a new ALS model with the opportunity to gain unique perspectives into mechanisms of neurodegeneration that contribute to ALS pathogenesis
Ellagic Acid Derivatives from Rubus ulmifolius Inhibit Staphylococcus aureus Biofilm Formation and Improve Response to Antibiotics
Biofilms contribute to the pathogenesis of many forms of Staphylococcus aureus infection. Treatment of these infections is complicated by intrinsic resistance to conventional antibiotics, thus creating an urgent need for strategies that can be used for the prevention and treatment of biofilm-associated infections.This study demonstrates that a botanical natural product composition (220D-F2) rich in ellagic acid and its derivatives can limit S. aureus biofilm formation to a degree that can be correlated with increased antibiotic susceptibility. The source of this composition is Rubus ulmifolius Schott. (Rosaceae), a plant used in complementary and alternative medicine in southern Italy for the treatment of skin and soft tissue infections. All S. aureus clonal lineages tested exhibited a reduced capacity to form a biofilm at 220D-F2 concentrations ranging from 50-200 µg/mL, which were well below the concentrations required to limit bacterial growth (530-1040 µg/mL). This limitation was therapeutically relevant in that inclusion of 220D-F2 resulted in enhanced susceptibility to the functionally-distinct antibiotics daptomycin, clindamycin and oxacillin. Testing with kidney and liver cell lines also demonstrated a lack of host cell cytotoxicity at concentrations of 220D-F2 required to achieve these effects.These results demonstrate that extract 220D-F2 from the root of Rubus ulmifolius can be used to inhibit S. aureus biofilm formation to a degree that can be correlated with increased antibiotic susceptibility without toxic effects on normal mammalian cells. Hence, 220D-F2 is a strong candidate for development as a botanical drug for use in the prevention and treatment of S. aureus biofilm-associated infections