5 research outputs found

    Optical manipulation of Saccharomyces cerevisiae cells reveals that green light protection against UV irradiation is favored by low Ca2+ and requires intact UPR pathway

    Get PDF
    AbstractOptical manipulation of Saccharomyces cerevisiae cells with high density green photons conferred protection against the deleterious effects of UV radiation. Combining chemical screening with UV irradiation of yeast cells, it was noted that the high density green photons relied on the presence of intact unfolded protein response (UPR) pathway to exert their protective effect and that the low Ca2+ conditions boosted the effect. UPR chemical inducers tunicamycin, dithiotreitol and calcium chelators augmented the green light effect in a synergic action against UV-induced damage. Photo-manipulation of cells was a critical factor since the maximum protection was achieved only when cells were pre-exposed to green light

    Optical manipulation of complex molecular systems by high density green photons: experimental and theoretical evidence

    No full text
    The recent revolution in modern optical techniques revealed that light interaction with matter generates a force, known as optical force, which produces material properties known in physics as optical matter. The basic technique of the domain uses forces exerted by a strongly focused beam of light to trap small objects and subsequently to manipulate their local structures. The purpose of this paper is to develop an alternative approach, using irradiations with high-density-green-photons, which induce electric dipoles by polarization effects. The materials used for the experiments were long carbon chains which represent the framework of biological macromolecules. The physical techniques used to reveal the locally induced molecular arrangements were: dynamic viscosity, zeta potential, chemiluminescence, liquid chromatography; mass spectrometry, and Raman and infrared spectroscopy. The principal result of our experiments was the detection of different molecular arrangements within the mixture of alkane chains, generated by our optical manipulations. This induced “optical matter” displayed two material properties: antioxidant effects and large molecular aggregation effects. In order to bring the experimental results in relation with theory, we developed a physical model and the interacting force between polarizable bodies was computed. By numerical calculations stable structures for N = 6 and N = 8 particles were obtained

    Conformational changes and metastable states induced in proteins by green light

    No full text
    In this paper we report conformational changes recorded on a protein molecule (α-amylase) under green light irradiation. In order to explain the experimental results we advanced the hypothesis that green light induces electric dipoles in the protein, which interact with each other, generating conformational modifications toward a more compact design, with different physical properties. The experiments were carried out with un-polarized light (λ = 520 nm) from a light-emitting-diode (1000 lm, 20 W, 105 mW on the target). In view of the character of our hypothesis, and corroborated with all our experimental results, we suggest that this phenomenon may be more extended and general, specific for a larger class of proteins, occurring on the protein macromolecules under the green light. The effects of α-amylase protein irradiation were revealed by circular dichroism, fluorescence, Raman and FTIR-spectroscopies, zeta potential, cyclic voltammetry, electric impedance spectroscopy and atomic force microscopy. Tentatively, we term the novel conformations as P∗ (polarized) proteins

    Green light effects on biological systems: a new biophysical phenomenon

    No full text
    This paper reports a new phenomenon connected with the influence of green light (GL) on biological systems. Our experiments have revealed an antioxidant effect of GL on cells subjected to lethal doses of UV at the cellular level and a protective effect of GL on DNA denatured by UV, coupled with a structural modification of DNA macromolecules under GL irradiation, at the molecular level. Mouse melanocyte cultures are subjected to UV irradiations with L50 fluxes of 16.0 J m − 2 s − 1. GL is obtained from a strontium aluminate pigment, which emits GL under UV activation. Cells grown in GL, prior to UV irradiation, present a clear surprising protective effect with surviving values close to the controls. A GL antioxidant effect is suggested to be mediated through GL influence on cellular water cluster dynamics. To test this hypothesis, reactive oxygen species (ROS) are determined in cell cultures. The results revealed a decrease of cellular ROS generation in the UV-irradiated samples protected by a previous 24 h of GL irradiation. At the DNA level, the same type of GL protection against UV damage is recorded by gel electrophoresis and by UV spectroscopy of the irradiated DNA molecules. Two physical methods, impedance spectroscopy and chronoamperometry, have revealed at the level of GL-irradiated DNA molecules spectral modifications that correlate with the UV spectroscopy results. The interaction between the chargeless photons and the field of water molecules from the cellular compartments is discussed in relation with the new field of macroscopic quantum coherence phenomena
    corecore