15 research outputs found
In situ monitoring of corrosion mechanisms and phosphate inhibitor surface deposition during corrosion of zinc–magnesium–aluminium (ZMA) alloys using novel time-lapse microscopy
In-situ time-lapse optical microscopy was used to examine the microstructural corrosion mechanisms in three zinc-magnesium-aluminium (ZMA) alloy coated steels immersed in 1% NaCl pH 7. Preferential corrosion of MgZn2 lamellae within the eutectic phases was observed in all the ZMA alloys followed by subsequent dissolution of Zn rich phases. The total extent and rate of corrosion, measured using time-lapse image analysis and scanning vibrating electrode technique (SVET) estimated mass loss, decreased as Mg and Al alloying additions were increased up to a level of 3 wt% Mg and 3.7 wt% Al. This was probably due to the increased presence of MgO and Al2O3 at the alloy surface retarding the kinetics of cathodic oxygen reduction. The addition of 1 x 10-2 mol/dm3 Na3PO4 to 1% NaCl pH 7 had a dramatic influence on the corrosion mechanism for a ZMA with passivation of anodic sites through phosphate precipitation observed using time-lapse. Intriguing rapid precipitation of filamentous phosphate was also observed and it is postulated that these filaments nucleate and grow due to super saturation effects. Polarisation experiments showed that the addition of 1 x 10-2 mol/dm3 Na3PO4 to the 1% NaCl electrolyte promoted an anodic shift of 50mV in open circuit potential for the ZMA alloy with a reduction in anodic current of 2.5 orders of magnitude suggesting that it was acting primarily as an anodic inhibitor supporting the inferences from the time-lapse investigations. These phosphate additions resulted in a 98% reduction in estimated mass loss as measured by SVET demonstrating the effectiveness of phosphate inhibitors for this alloy system
Superconducting CH structure
The superconducting CH structure is a novel multicell cavity for the acceleration of protons and ions in the low and intermediate energy regime. The CH structure is a cross-bar-type cavity; it is the first superconducting low energy multicell cavity operated in an H mode. A superconducting CH-prototype cavity with 19 gaps at β=0.1 has been built and tested successfully. Maximum surface fields of 25  MV/m and a corresponding effective cavity voltage gain of 3.7 MV have been achieved. In this paper the development and the tests of this new cavity are presented. This includes also tuning and coupling methods as well as a comparison with other low energy cavities