3 research outputs found

    Unambiguous evaluation of the relative photolysis rates of nitro indolinyl protecting groups critical for brain network studies

    Get PDF
    AbstractNitrated indolinyl photoprotecting groups are crucial tools extensively used in the study of neuronal signal transduction. Mononitrated photolabile protecting groups have been used effectively, however, recent advances in the introduction of a second nitro group have shown improvement in the photo efficiency of neurotransmitter (agonist) release, albeit, to varying extents, depending on the assessment methods employed. An unambiguous method is discussed based on Nuclear Magnetic Resonance (NMR), which is shown to be an effective technique in the relative overall rate comparison amongst varying nitrated protecting groups. Mononitrated and dinitrated photolabile protecting groups such as CDNI-Glu and MNI-Glu are used as an example to assess the relative value of adding a second nitro group in photoactive cage designs. Using this technique, it was shown that the second nitro group in CDNI systems enhances the overall relative rate of photocleavage by a factor of 5.8. This reported method can also be used to unambiguously determine relative rate of agonist photorelease

    Improved Synthesis of Caged Glutamate and Caging Each Functional Group

    No full text
    Glutamate is an excitatory neurotransmitter that controls numerous pathways in the brain. Neuroscientists make use of photoremovable protecting groups, also known as cages, to release glutamate with precise spatial and temporal control. Various cage designs have been developed and among the most effective has been the nitroindolinyl caging of glutamate. We, hereby, report an improved synthesis of one of the current leading molecules of caged glutamate, 4-carboxymethoxy-5,7-dinitroindolinyl glutamate (CDNI-Glu), which possesses efficiencies with the highest reported quantum yield of at least 0.5. We present the shortest route, to date, for the synthesis of CDNI-Glu in 4 steps, with a total reaction time of 40 h and an overall yield of 20%. We also caged glutamate at the other two functional groups, thereby, introducing two new cage designs: α-CDNI-Glu and <i>N</i>-CDNI-Glu. We included a study of their photocleavage properties using UV–vis, NMR, as well as a physiology experiment of a two-photon uncaging of CDNI-Glu in acute hippocampal brain slices. The newly introduced cage designs may have the potential to minimize the interference that CDNI-Glu has with the GABA<sub>A</sub> receptor. We are broadly disseminating this to enable neuroscientists to use these photoactivatable tools
    corecore