468 research outputs found

    Preparation of Inner Ear Sensory Hair Bundles for High Resolution Scanning Electron Microscopy

    Get PDF
    Chemical fixation techniques for preservation of sensory hair bundles in the mammalian inner ear for scanning electron microscopy (SEM) are reviewed. Fixatives employed were glutaraldehyde, glutaraldehyde-picrate, glutaraldehyde-tannic acid, glutaraldehyde-formaldehyde, glutaraldehyde followed by postfixation with osmium tetroxide and the osmium thiocarbohydrazide (OTOTO) method. Dehydration was routinely accomplished with ascending grades of acetone followed by critical point drying with liquid CO2 or fluorocarbon sublimation. Specimens other than those prepared by the OTOTO method were metal coated with gold, gold-palladium or platinum. Material was viewed at high resolution (2-3 nm) in a transmission electron microscope (TEM) fitted with a scanning system and an LaB6 filament. A few specimens, which were either coated with platinum, carbon or uncoated, were examined in a field emission SEM. We have concluded that glutaraldehyde fixation followed by critical point drying with CO2 and coating with platinum gives the best general preservation of stereocilia and their cross-links for routine high resolution SEM, but that carbon-coated or uncoated specimens offer potentially better results free from metal coating artifacts when viewed with field emission SEM. These methods have enabled us to make novel observations upon the surface detail and cross-links of stereocilia which have helped considerably in understanding the mechanical properties of hair bundles particularly in relation to sensory transduction. We have found that stereocilial surface detail and cross-links are sensitive to fixation regimes. In particular they are degraded by exposure to osmium tetroxide; they are also highly labile since deleterious changes in their appearance can be detected as early as 15 minutes following death

    The Effect of Bacterial Endotoxin Upon the Morphology of the Tectorial Membrane and Stereocilia in the Guinea Pig Cochlea

    Get PDF
    Endotoxin of E coli was microperfused into scala tympani or injected into the cerebrospinal fluid in anaesthetised pigmented guinea pigs. The effects of endotoxin on the cochlea were studied using electrophysiological techniques and scanning electron microscopy. We found a drop in the amplitude of the cochlear microphonics and compound action potentials 2 to 2.5 hours after injection. There were also changes in the morphology of stereocilia and the tectorial membrane. The stereocilia lost their rigidity and the tectorial membrane appeared swollen. These effects were less severe in animals which were pretreated with dexamethasone

    Identity and Advocacy: The Missing Components in Promoting Social-Emotional Health and Self-Regulation for Multiply Marginalized Girls

    Get PDF
    Girlhood has been a topic of great interest in the last decade. As individuals have examined the lack of girls in STEM or the increase of bullying in girls, there has been a push to understanding the differential experiences along gender-based lines. In this study, the researchers highlight the results of the successful implementation of a group-based curriculum that utilized identity and advocacy as critical components in a treatment package focused on self-regulation. Using a pretest-posttest design, the researchers found a statistically significant difference in several key areas that are of key importance when supporting the needs of adolescent girls. The researchers will discuss the findings of this pilot study, limitations, and recommendations for further research

    Biased total mass of cool core galaxy clusters by Sunyaev-Zel'dovich effect measurements

    Full text link
    The Sunyaev Zel'dovich (SZ) effect from galaxy clusters is one of the most powerful cosmological tools for investigating the large-scale Universe. The big advantage of the SZ effect is its redshift independence, which is not the case for visible and X-ray observations. It allows us to directly estimate the cluster's total mass from the integrated comptonization parameter Y, even for distant clusters. However, not having a full knowing intra-cluster medium (ICM) physics can affect the results. By taking self-similar temperature and density profiles of the ICM into account, we studied how different ICM morphologies can affect the cluster total mass estimation. With the help of the high percentage of cool core (CC) clusters, as observed so far, the present analysis focuses on studying this class of objects. A sample of eight nearby (0.1 < z < 0.5) and high-mass (M > 10^(14) M_sun) clusters observed by Chandra was considered. We simulated SZ observations of these clusters through X-ray derived information and analyzed the mock SZ data again with the simplistic assumption of an isothermal beta-model profile for the ICM. The bias on the recovered cluster total mass using different sets of assumptions is estimated to be 50% higher in the case of hydrostatic equilibrium. Possible contributions to the total bias due to the line-of-sight integration and the considered ICM template are taken into account. The large biases on total mass recovery firmly support, if still necessary, cluster modeling based on more sophisticated universal profiles as derived by X-ray observations of local objects and hydrodynamical simulations.Comment: 11 pages, 4 figures; minor revisions. Accepted for publication in A&

    The impact of COVID-19 on cancer care and oncology clinical research: an experts' perspective

    Get PDF
    The coronavirus disease-19 (COVID-19) pandemic promises to have lasting impacts on cancer clinical trials that could lead to faster patient access to new treatments. In this article, an international panel of oncology experts discusses the lasting impacts of the pandemic on oncology clinical trials and proposes solutions for clinical trial stakeholders, with the support of recent data on worldwide clinical trials collected by IQVIA. These lasting impacts and proposed solutions encompass three topic areas. Firstly, acceleration and implementation of new operational approaches to oncology trials with patient-centric, fully decentralized virtual approaches that include remote assessments via telemedicine and remote devices. Geographical differences in the uptake of remote technology, including telemedicine, are discussed in the article, focusing on the impact of the local adoption of new operational approaches. Secondly, innovative clinical trials. The pandemic has highlighted the need for new trial designs that accelerate research and limit risks and burden for patients while driving optimization of clinical trial objectives and endpoints, while testing is being minimized. Areas of considerations for clinical trial stakeholders are discussed in detail. In addition, the COVID-19 pandemic has exposed the underrepresentation of minority groups in clinical trials; the approach for oncology clinical trials to improve generalizability of efficacy and outcomes data is discussed. Thirdly, a new problem-focused collaborative framework between oncology trial stakeholders, including decision makers, to leverage and further accelerate the innovative approaches in clinical research developed during the COVID-19 pandemic. This could shorten timelines for patient access to new treatments by addressing the cultural and technological barriers to adopting new operational approaches and innovative clinical trials. The role of the different stakeholders is described, with the aim of making COVID-19 a catalyst for positive change in oncology clinical research and eventually in cancer care
    corecore