78 research outputs found

    Price of Anarchy in Bernoulli Congestion Games with Affine Costs

    Full text link
    We consider an atomic congestion game in which each player participates in the game with an exogenous and known probability pi[0,1]p_{i}\in[0,1], independently of everybody else, or stays out and incurs no cost. We first prove that the resulting game is potential. Then, we compute the parameterized price of anarchy to characterize the impact of demand uncertainty on the efficiency of selfish behavior. It turns out that the price of anarchy as a function of the maximum participation probability p=maxipip=\max_{i} p_{i} is a nondecreasing function. The worst case is attained when players have the same participation probabilities pipp_{i}\equiv p. For the case of affine costs, we provide an analytic expression for the parameterized price of anarchy as a function of pp. This function is continuous on (0,1](0,1], is equal to 4/34/3 for 0<p1/40<p\leq 1/4, and increases towards 5/25/2 when p1p\to 1. Our work can be interpreted as providing a continuous transition between the price of anarchy of nonatomic and atomic games, which are the extremes of the price of anarchy function we characterize. We show that these bounds are tight and are attained on routing games -- as opposed to general congestion games -- with purely linear costs (i.e., with no constant terms).Comment: 29 pages, 6 figure

    Markovian traffic equilibrium

    Full text link
    International audienceWe analyse an equilibrium model for traffic networks based on stochastic dynamic programming. In this model passengers move towards their destinatios by a sequential process of arc selection based on a discrete choice model at every intermediaete node in their trip. Route selection is the outcome of this sequential process while network flows correspond to the invariant measures of the underlying Markov chains. The approach may handle different discrete choice models at every node, including the possibility of mixing deterministic and stochastic distribution rules. It can also be used over a multimodal network in order to model the simultaneous selection of mode and route, as well as to treat the case of elastic demands. We establish the existence of a unique equilibrium. We report some numerical experiences comparing different methods
    corecore