18 research outputs found
euHCVdb: the European hepatitis C virus database
The hepatitis C virus (HCV) genome shows remarkable sequence variability, leading to the classification of at least six major genotypes, numerous subtypes and a myriad of quasispecies within a given host. A database allowing researchers to investigate the genetic and structural variability of all available HCV sequences is an essential tool for studies on the molecular virology and pathogenesis of hepatitis C as well as drug design and vaccine development. We describe here the European Hepatitis C Virus Database (euHCVdb, ), a collection of computer-annotated sequences based on reference genomes. The annotations include genome mapping of sequences, use of recommended nomenclature, subtyping as well as three-dimensional (3D) molecular models of proteins. A WWW interface has been developed to facilitate database searches and the export of data for sequence and structure analyses. As part of an international collaborative effort with the US and Japanese databases, the European HCV Database (euHCVdb) is mainly dedicated to HCV protein sequences, 3D structures and functional analyses
New regime in polyelectrolyte solutions
Usually polyelectrolyte solutions present a peak in the polyion/polyion structure factor for some value of the momentum transfer (scattering vector). We describe a new regime in dense polymer solutions, typically above , where is proportional to the concentration c of the solution. It is however not observed for all polyelectrolytes but only for those of intermediate stiffness, usually together with an ultimate regime where is proportional to and local orientational order prevails. This regime is robust against sample preparation and stable over time. We can understand it as jammed with randomly oriented persistent segments. This may explain why fully developed nematic order is so difficult to observe in synthetic polyelectrolytes
FALSTAFF, an apparatus to study fission fragment properties First arm results
International audienceNuclear fission is a complex process that still need fundamental studies. New measurements, particularly of correlated observables, could allow to develop more sophisticated theoretical models to eventually have truly predictive capabilities for the physics of fission. Moreover, the next generation reactors concepts are mostly foreseen to operate in the fast-neutron energy domain, requiring new high quality nuclear data. In this context, a new experimental setup, called FALSTAFF, dedicated to the study of fission is under development. The FALSTAFF setup aims to investigate the fission of actinides in the fast-neutron energy domain (from a few hundreds of keV to a few MeV). Once completed, this two-arm spectrometer will detect both fragments in coincidence and allow to measure their time of flight (ToF) and kinetic energy. The average neutron multiplicity as a function of the fission fragment mass can then be assessed. The first arm of the FALSTAFF spectrometer was built. It is composed of two main parts: first, two SED-MWPC (Multi-Wire Proportional Counter) detectors are used to measure the time-of-flight as well as the position of the fragments, thus reconstructing their velocity. Second, an axial ionisation chamber gives their kinetic energy and the energy loss profile. This proceeding will describe the FALSTAFF setup as well as the methods that are used to extract the required observables, leading up to the reconstruction of the neutron multiplicity to study the fission process. Then, the recent results obtained with the first arm of FALSTAFF will be presented, exhibiting kinetic energy, velocity and post-evaporation mass distributions. These observables will be displayed for 252Cf spontaneous fission and some of the improvements recently made will be discussed.</jats:p
FALSTAFF, an apparatus to study fission fragment properties First arm results
Nuclear fission is a complex process that still need fundamental studies. New measurements, particularly of correlated observables, could allow to develop more sophisticated theoretical models to eventually have truly predictive capabilities for the physics of fission. Moreover, the next generation reactors concepts are mostly foreseen to operate in the fast-neutron energy domain, requiring new high quality nuclear data. In this context, a new experimental setup, called FALSTAFF, dedicated to the study of fission is under development. The FALSTAFF setup aims to investigate the fission of actinides in the fast-neutron energy domain (from a few hundreds of keV to a few MeV). Once completed, this two-arm spectrometer will detect both fragments in coincidence and allow to measure their time of flight (ToF) and kinetic energy. The average neutron multiplicity as a function of the fission fragment mass can then be assessed.
The first arm of the FALSTAFF spectrometer was built. It is composed of two main parts: first, two SED-MWPC (Multi-Wire Proportional Counter) detectors are used to measure the time-of-flight as well as the position of the fragments, thus reconstructing their velocity. Second, an axial ionisation chamber gives their kinetic energy and the energy loss profile. This proceeding will describe the FALSTAFF setup as well as the methods that are used to extract the required observables, leading up to the reconstruction of the neutron multiplicity to study the fission process. Then, the recent results obtained with the first arm of FALSTAFF will be presented, exhibiting kinetic energy, velocity and post-evaporation mass distributions. These observables will be displayed for 252Cf spontaneous fission and some of the improvements recently made will be discussed
Heavy-ion test of detectors with conventional and resistive Micromegas used in TPC configuration
International audienceWe have performed tests of Micromegas detector prototypes using the heavy-ion beams from the SIS synchrotron of GSI (Darmstadt, Germany). The beams varied from (12)C(6+) to (179)Au(65+) and from 250 to 1000 MeV per nucleon. We have tested two amplification technologies, conventional and resistive Micromegas, and two construction concepts, bulk-Micromegas and micro-meshes screwed on the PCB. The obtained position resolution below 200 mu m for 5 mm wide strips implies that the bulk resistive Micromegas technology might meet the requirements of the future R3B TPC project. We also developed a fast and very low noise front-end electronics connected directly to the Printed Circuit Board (PCB) of the detector itself. This concept has shown very good performances and robustness
Non-invasive Profilers for the Cold Part of ESS Accelerator
International audienceSeveral Non-invasive Profile Monitors are being in-stalled along the accelerator to support the commissioning, tuning and operation of the powerful proton based ESS linear accelerator. In the low energy parts of the ESS linac (3.6 MeV to 90 MeV), the residual gas pressure is high enough to measure the transverse beam profile by using fluorescence induced by the beam on the gas molecules. However, in the ESS linac sections above 90 MeV, protons are accelerated by superconductive cavities working at cryogenic temperatures and high vacuum. Therefore, the signal based on the fluorescence process is too weak, while ionization can counteract this drawback. We have provided five IPM (Ionization Profile Monitors) pairs for energies ranging from 100 to 600 MeV. The design of such monitors is challenging due to weak signal (as a result of high proton energy and low pressure <10-9 mbar), tight space constraints inside the vacuum chamber, space charge effect, ISO-5 cleanliness requirement, and electrode polarization at ±15 kV. This publication will detail the development we followed to fulfil the ESS requirements
A Micromegas Based Neutron Detector for the ESS Beam Loss Monitoring
International audienceBeam loss monitors are of high importance in high-intensity hadron facilities where any energy loss can produce damage or/and activation of materials. A new type of neutron BLM have been developed for hadron accelerators aiming to cover the low energy part. In this region typical BLMs based on charged particle detection are not appropriate because the expected particle fields will be dominated by neutrons and photons. Moreover, the photon background due to the RF cavities can produce false beam loss signals. The BLM proposed is based on gaseous Micromegas detectors, designed to be sensitive to fast neutrons and insensitive to photons (X and gamma). In addition, the detectors will be insensitive to thermal neutrons, since part of them will not be directly correlated to beam loss location. The appropriate configuration of the Micromegas operating conditions will allow excellent timing, intrinsic photon background suppression and individual neutron counting, extending thus the dynamic range to very low particle fluxes. The concept of the detectors and the first results from tests in several facilities will be presented. Moreover, their use in the nBLM ESS system will be also discusse
Characterization and First Beam Loss Detection with One ESS-nBLM System Detector
International audienceThe monitoring of losses is crucial in any accelerator. In the new high intensity hadron facilities even low energy beam can damage or activate the materials so the detection of small losses in this region is very important. A new type of neutron beam loss monitor has been developed specifically targeting this region, where only neutrons and photons can be produced and where typical BLM, based on charged particle detection, could not be appropriate because of the photon background due to the RF cavities. The BLM proposed is based on gaseous Micromegas detectors, designed to be sensitive to fast neutrons and with little sensitivity to photons. Development of the detectors presented here has been done to fulfil the requirements of ESS and they will be part of the ESS-BI systems. The detector has been presented in previous editions of the conference. Here we focus on the neutron/gamma rejection with the final FEE and in the first operation of one of the modules in a beam during the commissioning of LINAC4 (CERN) with the detection of provoked losses and their clear separation from RF gammas. The ESS-nBLM system is presented in this conference in a separate contribution