99 research outputs found

    Amorphous calcium phosphates: synthesis, properties and uses in biomaterials

    Get PDF
    This review paper on amorphous calcium phosphates (ACPs) provides an update on several aspects of these compounds which have led to many studies and some controversy since the 1970s, particularly because of the lack of irrefutable proof of the occurrence of an ACP phase in mineralised tissues of vertebrates. The various synthesis routes of ACPs with different compositions are reported and the techniques used to characterise this phase are reviewed. We focus on the various physico-chemical properties of ACPs, especially the reactivity in aqueous media, which have been exploited to prepare bioactive bone substitutes, particularly in the form of coatings and cements for orthopaedic applications and composites for dental application

    The Calcium Phosphate−Calcium Carbonate System: Growth of Octacalcium Phosphate on Calcium Carbonates

    Get PDF
    The kinetics of nucleation and crystal growth of octacalcium phosphate [Ca8(PO4)6H2·5H2O, OCP] from calcium phosphate supersaturated solutions inoculated with seed crystals was investigated at 37 °C, pH 7.40, at conditions of constant solution supersaturation. Stable calcium phosphate solutions, supersaturated with respect to OCP and hydroxyapatite [Ca5(PO4)3OH, HAP] were inoculated with calcium carbonate-based bone cement powder consisting of mixed aragonite and calcite crystals and with well-characterized calcite seed crystals. On all substrates tested, OCP nucleated followed by crystal growth of the nuclei formed past the lapse of induction times, inversely proportional to the solution supersaturation. From the dependence of the induction time on the solution supersaturation with respect to OCP, a value of 10 mJ m−2 was calculated for the nucleating phase. The rates of OCP crystal growth on the carbonate substrates showed linear dependence on the solution supersaturation that in combination with the independence from the fluid dynamics in the reactor suggested a surface diffusion-controlled mechanism. Moreover, the independence of the crystallization rates on the amount of the inoculating seed crystals suggested that nucleation and growth took place exclusively on the crystalline substrates. The transient calcium phosphate phase, OCP, was stabilized in our experiments, and it was the only phase growing at constant driving force, despite the fact the solutions were supersaturated with respect to HAP as well

    Compositions et propriétés de nouveaux ciments biomédicaux à base de carbonate de calcium

    Get PDF
    Les ciments ioniques sont une voie d’avenir des biomatériaux de substitution osseuse et dentaire. Des compositions originales de ciments biorésorbables et biocompatibles incluant une proportion importante de carbonate de calcium synthétique (de 40 % à 100 % de CaCO3 dans le mélange de poudres initial) éventuellement associé à un phosphate de calcium métastable ont été mises au point dans la perspective de répondre à un besoin de ciments biomédicaux aux propriétés de résorption accrues. Elles constituent une gamme étendue de compositions finales de ciments microporeux (de 100 % CaCO3 à 100 % apatite nanocristalline carbonatée) offrant la possibilité d’adapter la composition du ciment à l’application visée. La diffraction des RX et la spectroscopie infrarouge apparaissent comme des techniques de caractérisation complémentaires pour l’étude de ces nouveaux types de ciments

    Formation and evolution of hydrated surface layers of apatites

    Get PDF
    Nanocrystalline apatites exhibit a very fragile structured hydrated surface layer which is only observed in aqueous media. This surface layer contains mobile ionic species which can be easily exchanged with ions from the surrounding fluids. Although the precise structure of this surface layer is still unknown, it presents very specific spectroscopic characteristics. The structure of the hydrated surface layer depends on the constitutive mineral ions: ion exchanges of HPO42- ions by CO32- ions or of Ca2+ by Mg2+ ions result in a de-structuration of the hydrated layer and modifies its spectroscopic characteristics. However, the original structure can be retrieved by reverse exchange reaction. These alterations do not seem to affect the apatitic lattice. Stoichiometric apatite also shows HPO42- on their surface due to a surface hydrolysis after contact with aqueous solutions. Ion exchange is also observed and the environments of the surface carbonate ions seem analogous to that observed in nanocrystalline apatites. The formation of a hydrated layer in aqueous media appears to be a property common to apatites which has to be taken into account in their reactivity and biological behavior

    What bridges mineral platelets of bone?

    Get PDF
    Commentary on: Davies E, Müller KH, Wong WC, Pickard CJ, Reid DG, Skepper JN, Duer MH. Citrate bridges between mineral platelets in bone. Proc Natl Acad Sci USA 2014;111:E1354–E1363

    Chemical Diversity of Apatites

    Get PDF
    Apatites can accommodate a large number of vacancies and afford multiple ionic substitutions determining their reactivity and biological properties. Unlike other biominerals they offer a unique adaptability to various biological functions. The diversity of apatites is essentially related to their structure and to their mode of formation. Special charge compensation mechanisms allow molecular insertions and ion substitutions and determine to some extent their solubility behaviour. Apatite formation at physiological pH involves a structured surface hydrated layer nourishing the development of apatite domains. This surface layer contains relatively mobile and exchangeable ions, and is mainly responsible for the surface properties of apatite crystals from a chemical (dissolution properties, ion exchange ability, ion insertions, molecule adsorption and insertions) and a physical (surface charge, interfacial energy) point of view. These characteristics are used by living organisms and can also be exploited in material science

    Bone mineral: update on chemical composition and structure

    Get PDF
    Bone mineral: update on chemical composition and structur

    Co-grinding significance for calcium carbonate–calcium phosphate mixed cement. Part I: effect of particle size and mixing on solid phase reactivity

    Get PDF
    In part I of this study we aim to evaluate and control the characteristics of the powders constituting the solid phase of a vaterite CaCO3–dicalcium phosphate dihydrate cement using a co-grinding process and to determine their impact on cement setting ability. An original methodology involving complementary analytical techniques was implemented to thoroughly investigate the grinding mechanism of separated or mixed reactive powders and the effects on solid phase reactivity. We showed that the association of both reactive powders during co-grinding improves the efficiency of this process in terms of the particle size decrease, thus making co-grinding adaptable to industrial development of the cement. For the first time the usefulness of horizontal attenuated total reflection Fourier transform infrared spectroscopy to follow the chemical setting reaction at 37°C in real time has been demonstrated. We point out the antagonist effects that co-grinding can have on cement setting: the setting time is halved; however, progress of the chemical reaction involving dissolution–reprecipitation is delayed by 30 min, probably due to the increased contact area between the reactive powders, limiting their hydration. More generally, we can take advantage of the co-grinding process to control powder mixing, size and reactivity and this original analytical methodology to better understand its effect on the phenomena involved during powder processing and cement setting, which is decisive for the development of multi-component cements

    Physico-chemical properties of nanocrystalline apatites: Implications for biominerals and biomaterials

    Get PDF
    Nanocrystalline apatites play an important role in biomineralisation and they are used as bioactive biominerals for orthopaedic applications. One of the most interesting characteristics of the nanocrystals, evidenced by spectroscopic methods, is the existence of a structured surface hydrated layer, well developed in freshly formed precipitates, which becomes progressively transformed into the more stable apatitic lattice upon ageing in aqueous media. The hydrated layer is very fragile and irreversibly altered upon drying. Several routes leading to different apatite compositions are found in biological systems. The loosely bound ions of the hydrated layer can be easily and reversibly substituted by other ions in fast aqueous ion exchange reactions. These ions can either be included in the growing stable apatite lattice during the ageing process or remain in the hydrated layer. The adsorption properties of nanocrystals appear to be strongly dependent on the composition of the hydrated layer and on ageing. The surface reactivity of the apatite nanocrystals can play a part in different biomaterials and could explain the setting reactions of biomimetic calcium phosphate cements and the possibility of obtaining adherent nanocrystalline coatings on different substrates

    Apatite Biominerals

    Get PDF
    Calcium phosphate apatites offer outstanding biological adaptability that can be attributed to their specific physico-chemical and structural properties. The aim of this review is to summarize and discuss the specific characteristics of calcium phosphate apatite biominerals in vertebrate hard tissues (bone, dentine and enamel). Firstly, the structural, elemental and chemical compositions of apatite biominerals will be summarized, followed by the presentation of the actual conception of the fine structure of synthetic and biological apatites, which is essentially based on the existence of a hydrated layer at the surface of the nanocrystals. The conditions of the formation of these biominerals and the hypothesis of the existence of apatite precursors will be discussed. Then, we will examine the evolution of apatite biominerals, especially during bone and enamel aging and also focus on the adaptability of apatite biominerals to the biological function of their related hard tissues. Finally, the diagenetic evolution of apatite fossils will be analyzed
    corecore