31 research outputs found
Dynamical response of the "GGG" rotor to test the Equivalence Principle: theory, simulation and experiment. Part I: the normal modes
Recent theoretical work suggests that violation of the Equivalence Principle
might be revealed in a measurement of the fractional differential acceleration
between two test bodies -of different composition, falling in the
gravitational field of a source mass- if the measurement is made to the level
of or better. This being within the reach of ground based
experiments, gives them a new impetus. However, while slowly rotating torsion
balances in ground laboratories are close to reaching this level, only an
experiment performed in low orbit around the Earth is likely to provide a much
better accuracy.
We report on the progress made with the "Galileo Galilei on the Ground" (GGG)
experiment, which aims to compete with torsion balances using an instrument
design also capable of being converted into a much higher sensitivity space
test.
In the present and following paper (Part I and Part II), we demonstrate that
the dynamical response of the GGG differential accelerometer set into
supercritical rotation -in particular its normal modes (Part I) and rejection
of common mode effects (Part II)- can be predicted by means of a simple but
effective model that embodies all the relevant physics. Analytical solutions
are obtained under special limits, which provide the theoretical understanding.
A simulation environment is set up, obtaining quantitative agreement with the
available experimental data on the frequencies of the normal modes, and on the
whirling behavior. This is a needed and reliable tool for controlling and
separating perturbative effects from the expected signal, as well as for
planning the optimization of the apparatus.Comment: Accepted for publication by "Review of Scientific Instruments" on Jan
16, 2006. 16 2-column pages, 9 figure
Abatement of thermal noise due to internal damping in 2D oscillators with rapidly rotating test masses.
Mechanical oscillators can be sensitive to very small forces. Low frequency effects are up-converted to higher frequency by rotating the oscillator. We show that for 2-dimensional oscillators rotating at frequency much higher than the signal the thermal noise force due to internal losses and competing with it is abated as the square root of the rotation frequency. We also show that rotation at frequency much higher than the natural one is possible if the oscillator has 2 degrees of freedom, and describe how this property applies also to torsion balances. In addition, in the 2D oscillator the signal is up-converted above resonance without being attenuated as in the 1D case, thus relaxing requirements on the read out. This work indicates that proof masses weakly coupled in 2D and rapidly rotating can play a major role in very small force physics experiments
LARES/WEBER-SAT and the equivalence principle
It has often been claimed that the proposed Earth artificial satellite
LARES/WEBER-SAT-whose primary goal is, in fact, the measurement of the general
relativistic Lense-Thirring effect at a some percent level-would allow to
greatly improve, among (many) other things, the present-day (10^-13) level of
accuracy in testing the equivalence principle as well. Recent claims point
towards even two orders of magnitude better, i.e. 10^-15. In this note we show
that such a goal is, in fact, unattainable by many orders of magnitude being,
instead, the achievable level of the order of 10^-9.Comment: LaTex, 4 pages, no figures, no tables, 26 references. Proofs
corrections included. To appear in EPL (Europhysics Letters
"Galileo Galilei" (GG) a small satellite to test the equivalence principle of Galileo, Newton and Einstein
"Galileo Galilei" (GG) is a small satellite designed to fly in low Earth orbit with the goal of testing the Equivalence Principle-which is at the basis of the General Theory of Relativity-to 1 part in 1017. If successful, it would improve current laboratory results by 4 orders of magnitude. A confirmation would strongly constrain theories; proof of violation is believed to lead to a scientific revolution. The experiment design allows it to be carried out at ambient temperature inside a small 1-axis stabilized satellite (250 kg total mass). GG is under investigation at Phase A-2 level by ASI (Agenzia Spaziale Italiana) at Thales Alenia Space in Torino, while a laboratory prototype (known as GGG) is operational at INFN laboratories in Pisa, supported by INFN (Istituto Nazionale di fisica Nucleare) and ASI. A final study report will be published in 2009
'Galileo Galilei' (GG): space test of the weak equivalence principle to 10 −17 and laboratory demonstrations
The small satellite 'Galileo Galilei' (GG) will test the universality of free fall and hence the weak equivalence principle which is the founding pillar of general relativity to 1 part in 10 17 . It will use proof masses whose atoms differ substantially from one another in their mass energy content, so as to maximize the chance of violation. GG will improve by four orders of magnitude the current best 'E¨ ot-Wash' tests based on slowly rotating torsion balances, which have been able to reach their thermal noise level. In GG, the expected violation signal is a relative displacement between the proof masses of � 0.6 pm caused by a differential acceleration aGG � 8 × 10 −17 ms −2 pointing to the center of mass of the Earth as the satellite orbits around it at νGG � 1.7 × 10 −4 Hz. GG will fly an innovative acceleration sensor based on rapidly rotating macroscopic test masses weakly coupled in 2D which up-converts the signal to νspin � 1H z, a value well above the frequency of natural oscillations of the masses relative to each other νd = 1/Td � 1/(540 s). The sensor is unique in that it ensures high rotation frequency, low thermal noise and no attenuation of the signal strength (Pegna et al 2011 Phys. Rev. Lett. 107 200801). A readout based on a ver
Prevention of the recurrent varicose veins in the groin after surgery
Atti XV Congresso Mondiale della UIP – Rio de Janeiro 2-7 ottobre 2005