929 research outputs found
South African national household survey of HIV/AIDS prevalence, behavioural risks and mass media impact-detailed methodology and response rate results
Objectives. To describe the methodology used in a recent survey of HIV/AIDS in South Africa and to present the response rates.Methods. A cross-sectional, national household-based survey was conducted using second-generation surveillance procedures. A complex multistage sampling technique was used to create a master sample of 1 000 census enumerator areas out of a total of 86 000 nationally. Aerial photographs were taken and used to randomly select more than 10 197 households and ultimately 13 518 individuals from a sampling frame of 31 321 people. Phase 1 of the study involved notifying the household residents about the study and collecting key demographic information on respondents aged 2 years and older. This information was used to randomly select up to 3 respondents from each household: 1 adult (25 years and older), 1 youth (15- 24 years), and 1 child (2- 14 years). In phase 2 nurses interviewed respondents and collected oral fluid specimens for HIV testing. In the case of children aged 2 - 11 years, parents or guardians were interviewed, but HIV testing was performed on the selected children. Questionnaire data were anonymously linked with HIV test results.Results. A total of 9 963 persons agreed to be interviewed and 8 840 were tested for HIV, yielding a response rate of 73.7% and 65.4% respectively. However, only 8 428 (62.3%) HIV test results were correctly matched with behavioural data. The results showed that those tested for HIV did not differ from those not tested in terms of key determinants.Conclusion. It is possible to use community-based surveys to study the prevalence of HIV in the general population
Faster linearizability checking via -compositionality
Linearizability is a well-established consistency and correctness criterion
for concurrent data types. An important feature of linearizability is Herlihy
and Wing's locality principle, which says that a concurrent system is
linearizable if and only if all of its constituent parts (so-called objects)
are linearizable. This paper presents -compositionality, which generalizes
the idea behind the locality principle to operations on the same concurrent
data type. We implement -compositionality in a novel linearizability
checker. Our experiments with over nine implementations of concurrent sets,
including Intel's TBB library, show that our linearizability checker is one
order of magnitude faster and/or more space efficient than the state-of-the-art
algorithm.Comment: 15 pages, 2 figure
Photothermal Absorption Spectroscopy of Individual Semiconductor Nanocrystals
Photothermal heterodyne detection is used to record the first
room-temperature absorption spectra of single CdSe/ZnS semiconductor
nanocrystals. These spectra are recorded in the high cw excitation regime, and
the observed bands are assigned to transitions involving biexciton and trion
states. Comparison with the single nanocrystals photoluminescence spectra leads
to the measurement of spectral Stokes shifts free from ensemble averaging
Evaluating Literacy Sensitive Client Education Materials for the SMMART Clinic
This master’s project was completed in collaboration with the St. Mary’s Medical and Rehabilitative Therapies (SMMART) Clinic, located on the campus of St. Catherine University in St. Paul, Minnesota. Through the completion of literature reviews, a needs assessment, and project activities, nine graduate occupational therapy students analyzed the needs of this clinic and aimed to improve client care. The SMMART clinic serves primarily Spanish-speaking clients who are low-income, uninsured, or underinsured. This population often faces obstacles in accessing primary health care and rehabilitation, including language and literacy-related barriers. Occupational therapy can play an important role in addressing these barriers and providing high quality care and education that is sensitive to clients’ literacy and language preferences
Task shifting and integration of HIV care into primary care in South Africa: The development and content of the streamlining tasks and roles to expand treatment and care for HIV (STRETCH) intervention
Background: Task shifting and the integration of human immunodeficiency virus (HIV) care into primary care services have been identified as possible strategies for improving access to antiretroviral treatment (ART). This paper describes the development and content of an intervention involving these two strategies, as part of the Streamlining Tasks and Roles to Expand Treatment and Care for HIV (STRETCH) pragmatic randomised controlled trial. Methods: Developing the intervention: The intervention was developed following discussions with senior management, clinicians, and clinic staff. These discussions revealed that the establishment of separate antiretroviral treatment services for HIV had resulted in problems in accessing care due to the large number of patients at ART clinics. The intervention developed therefore combined the shifting from doctors to nurses of prescriptions of antiretrovirals (ARVs) for uncomplicated patients and the stepwise integration of HIV care into primary care services. Results: Components of the intervention: The intervention consisted of regulatory changes, training, and guidelines to support nurse ART prescription, local management teams, an implementation toolkit, and a flexible, phased introduction. Nurse supervisors were equipped to train intervention clinic nurses in ART prescription using outreach education and an integrated primary care guideline. Management teams were set up and a STRETCH coordinator was appointed to oversee the implementation process. Discussion: Three important processes were used in developing and implementing this intervention: active participation of clinic staff and local and provincial management, educational outreach to train nurses in intervention sites, and an external facilitator to support all stages of the intervention rollout
Synthesis of CdS and CdSe nanocrystallites using a novel single-molecule precursors approach
The synthesis of CdS and CdSe nanocrystallites using the thermolysis of several dithioor
diselenocarbamato complexes of cadmium in trioctylphosphine oxide (TOPO) is reported.
The nanodispersed materials obtained show quantum size effects in their optical spectra
and exhibit near band-edge luminescence. The influence of experimental parameters on
the properties of the nanocrystallites is discussed. HRTEM images of these materials show
well-defined, crystalline nanosized particles. Standard size fractionation procedures can
be performed in order to narrow the size dispersion of the samples. The TOPO-capped CdS
and CdSe nanocrystallites and simple organic bridging ligands, such as 2,2¢-bipyrimidine,
are used as the starting materials for the preparation of novel nanocomposites. The optical
properties shown by these new nanocomposites are compared with those of the starting
nanodispersed materials
Activation and detoxification of cassava cyanogenic glucosides by the whitefly Bemisia tabaci
Abstract Two-component plant defenses such as cyanogenic glucosides are produced by many plant species, but phloem-feeding herbivores have long been thought not to activate these defenses due to their mode of feeding, which causes only minimal tissue damage. Here, however, we report that cyanogenic glycoside defenses from cassava (Manihot esculenta), a major staple crop in Africa, are activated during feeding by a pest insect, the whitefly Bemisia tabaci, and the resulting hydrogen cyanide is detoxified by conversion to beta-cyanoalanine. Additionally, B. tabaci was found to utilize two metabolic mechanisms to detoxify cyanogenic glucosides by conversion to non-activatable derivatives. First, the cyanogenic glycoside linamarin was glucosylated 1–4 times in succession in a reaction catalyzed by two B. tabaci glycoside hydrolase family 13 enzymes in vitro utilizing sucrose as a co-substrate. Second, both linamarin and the glucosylated linamarin derivatives were phosphorylated. Both phosphorylation and glucosidation of linamarin render this plant pro-toxin inert to the activating plant enzyme linamarase, and thus these metabolic transformations can be considered pre-emptive detoxification strategies to avoid cyanogenesis
A pseudopotential study of electron-hole excitations in colloidal, free-standing InAs quantum dots
Excitonic spectra are calculated for free-standing, surface passivated InAs
quantum dots using atomic pseudopotentials for the single-particle states and
screened Coulomb interactions for the two-body terms. We present an analysis of
the single particle states involved in each excitation in terms of their
angular momenta and Bloch-wave parentage. We find that (i) in agreement with
other pseudopotential studies of CdSe and InP quantum dots, but in contrast to
k.p calculations, dot states wavefunction exhibit strong odd-even angular
momentum envelope function mixing (e.g. with ) and large
valence-conduction coupling. (ii) While the pseudopotential approach produced
very good agreement with experiment for free-standing, colloidal CdSe and InP
dots, and for self-assembled (GaAs-embedded) InAs dots, here the predicted
spectrum does {\em not} agree well with the measured (ensemble average over dot
sizes) spectra. (1) Our calculated excitonic gap is larger than the PL measure
one, and (2) while the spacing between the lowest excitons is reproduced, the
spacings between higher excitons is not fit well. Discrepancy (1) could result
from surface states emission. As for (2), agreement is improved when account is
taken of the finite size distribution in the experimental data. (iii) We find
that the single particle gap scales as (not ), that the
screened (unscreened) electron-hole Coulomb interaction scales as
(), and that the eccitonic gap sclaes as . These scaling
laws are different from those expected from simple models.Comment: 12 postscript figure
Review of microdialysis in brain tumors, from concept to application: First Annual Carolyn Frye-Halloran Symposium
In individuals with brain tumors, pharmacodynamic and pharmacokinetic studies of therapeutic agents have historically used analyses of drug concentrations in serum or cerebrospinal fluid, which unfortunately do not necessarily reflect concentrations within the tumor and adjacent brain. This review article introduces to neurological and medical oncologists, as well as pharmacologists, the application of microdialysis in monitoring drug metabolism and delivery within the fluid of the interstitial space of brain tumor and its surroundings. Microdialysis samples soluble molecules from the extracellular fluid via a semipermeable membrane at the tip of a probe. In the past decade, it has been used predominantly in neurointensive care in the setting of brain trauma, vasospasm, epilepsy, and intracerebral hemorrhage. At the first Carolyn Frye-Halloran Symposium held at Massachusetts General Hospital in March 2002, the concept of microdialysis was extended to specifically address its possible use in treating brain tumor patients. In doing so we provide a rationale for the use of this technology by a National Cancer Institute consortium, New Approaches to Brain Tumor Therapy, to measure levels of drugs in brain tissue as part of phase 1 trials. Originally published Neuro-oncology, Vol. 6, No. 1, Jan 200
First-Principles Dynamical Coherent-Potential Approximation Approach to the Ferromagnetism of Fe, Co, and Ni
Magnetic properties of Fe, Co, and Ni at finite temperatures have been
investigated on the basis of the first-principles dynamical CPA (Coherent
Potential Approximation) combined with the LDA (Local Density Approximation) +
Hamiltonian in the Tight-Binding Linear Muffintin Orbital (TB-LMTO)
representation. The Hamiltonian includes the transverse spin fluctuation terms.
Numerical calculations have been performed within the harmonic approximation
with 4th-order dynamical corrections. Calculated single-particle densities of
states in the ferromagnetic state indicate that the dynamical effects reduce
the exchange splitting, suppress the band width of the quasi-particle state,
and causes incoherent excitations corresponding the 6 eV satellites. Results of
the magnetization vs temperature curves, paramagnetic spin susceptibilities,
and the amplitudes of local moments are presented. Calculated Curie
temperatures () are reported to be 1930K for Fe, 2550K for Co, and
620K for Ni; for Fe and Co are overestimated by a factor of 1.8,
while in Ni agrees with the experimental result. Effective Bohr
magneton numbers calculated from the inverse susceptibilities are 3.0 (Fe), 3.0 (Co), and 1.6 (Ni), being in
agreement with the experimental ones. Overestimate of in Fe and Co
is attributed to the neglects of the higher-order dynamical effects as well as
the magnetic short range order.Comment: 10 pages, 13 figure
- …