2,065 research outputs found
Preliminary design study - Oxidizer tank helium pressure regulator, Flox-Atlas, airborne Final report
Oxidizer tank helium pressure regulator compatible with fluorine-liquid oxyge
Preliminary design study - Oxidizer tank relief valve, Flox-Atlas airborne Final report
Protecting fluorine-liquid oxygen Atlas launch vehicle oxidizer tank against overpressurizatio
Enhancing the ethical use of learning analytics in Australian higher education
Ensuring the ethical use of data about students is an important consideration in the use of learning analytics in Australian higher education. In early 2019 a discussion paper was published by a group of learning analytics specialists in the sector to help promote the conversation around the key ethical issues institutions need to address in order to ensure the ethical use of learning analytics. This panel session will explore these ethical issues in more detail and update the conversation with new perspectives and provocations. The panel will include authors of the discussion paper and structured so the audience will have an active role in considering the key issues and advancing the ongoing conversations about these important issues
Spatial Variability Analysis: A First Step in Site-Specific Management
Small-scale spatial variability of selected soil-test parameters in two adjacent central Iowa fields is discussed. We used semivariance analysis to detect the distance to which parameters were correlated and to estimate the strength of each correlation. Distinct differences in spatial dependence patterns were observed for the two farming systems
Modified Bell-Plesset Effect with Compressibility: Application to Double-Shell Ignition Target Designs
The effect of spherical convergence on the fluid stability of collapsing and expanding bubbles was originally treated by Bell [Los Alamos Scientific Laboratory Report No. LA-1321 (1951)] and Plesset [J. Appl. Phys. 25, 96 (1954)]. The additional effect of fluid compressibility was also considered by Bell but was limited to the case of nonzero density on only one side of a fluid interface. A more general extension is developed which considers distinct time-dependent uniform densities on both sides of an interface in a spherically converging geometry. A modified form of the velocity potential is used that avoids an unphysical divergence at the origin [Goncharov et al., Phys. Plasmas 7, 5118 (2000); Lin et al., Phys. Fluids 14, 2925 (2002)]. Two consequences of this approach are that an instability proposed by Plesset for an expanding bubble in the limit of large interior density is now absent and application to inertial confinement fusion studies of stability becomes feasible. The model is applied to a proposed ignition double-shell target design [Amendt et al., Phys. Plasmas 9, 2221 (2002)] for the National Ignition Facility [Paisner et al., Laser Focus World 30, 75 (1994)] for studying the stability of the inner surface of an imploding high-Z inner shell. Application of the Haan [Phys. Rev. A 39, 5812 (1989)] saturation criterion suggests that ignition is possible
Quiescent consistency: Defining and verifying relaxed linearizability
Concurrent data structures like stacks, sets or queues need to be highly optimized to provide large degrees of parallelism with reduced contention. Linearizability, a key consistency condition for concurrent objects, sometimes limits the potential for optimization. Hence algorithm designers have started to build concurrent data structures that are not linearizable but only satisfy relaxed consistency requirements. In this paper, we study quiescent consistency as proposed by Shavit and Herlihy, which is one such relaxed condition. More precisely, we give the first formal definition of quiescent consistency, investigate its relationship with linearizability, and provide a proof technique for it based on (coupled) simulations. We demonstrate our proof technique by verifying quiescent consistency of a (non-linearizable) FIFO queue built using a diffraction tree. © 2014 Springer International Publishing Switzerland
Transient x-ray diffraction used to diagnose shock compressed Si crystals on the Nova laser
Transient x-ray diffraction is used to record time-resolved information about the shock compression of materials. This technique has been applied on Nova shock experiments driven using a hohlraum x-ray drive. Data were recorded from the shock release at the free surface of a Si crystal, as well as from Si at an embedded ablator/Si interface. Modeling has been done to simulate the diffraction data incorporating the strained crystal rocking curves and Bragg diffraction efficiencies. Examples of the data and post-processed simulations are presented
A pseudopotential study of electron-hole excitations in colloidal, free-standing InAs quantum dots
Excitonic spectra are calculated for free-standing, surface passivated InAs
quantum dots using atomic pseudopotentials for the single-particle states and
screened Coulomb interactions for the two-body terms. We present an analysis of
the single particle states involved in each excitation in terms of their
angular momenta and Bloch-wave parentage. We find that (i) in agreement with
other pseudopotential studies of CdSe and InP quantum dots, but in contrast to
k.p calculations, dot states wavefunction exhibit strong odd-even angular
momentum envelope function mixing (e.g. with ) and large
valence-conduction coupling. (ii) While the pseudopotential approach produced
very good agreement with experiment for free-standing, colloidal CdSe and InP
dots, and for self-assembled (GaAs-embedded) InAs dots, here the predicted
spectrum does {\em not} agree well with the measured (ensemble average over dot
sizes) spectra. (1) Our calculated excitonic gap is larger than the PL measure
one, and (2) while the spacing between the lowest excitons is reproduced, the
spacings between higher excitons is not fit well. Discrepancy (1) could result
from surface states emission. As for (2), agreement is improved when account is
taken of the finite size distribution in the experimental data. (iii) We find
that the single particle gap scales as (not ), that the
screened (unscreened) electron-hole Coulomb interaction scales as
(), and that the eccitonic gap sclaes as . These scaling
laws are different from those expected from simple models.Comment: 12 postscript figure
- …